YEDITEPE UNIVERSITY FACULTY OF ARTS AND SCIENCES

DEPARTMENT OF MATHEMATICS

BOLOGNA INFORMATION PACKAGE

MARCH 2025

YEDİTEPE UNIVERSITY FACULTY OF ARTS AND SCIENCES DEPARTMENT OF MATHEMATICS INFORMATION PACKAGE (2025)

Program Descriptions:

Organization:

The Department of Mathematics started to provide education within the Faculty of Arts and Sciences in 1996 and had its first graduates in 2001.

Degree:

Bachelor's Degree in Mathematics (English)

Level of Degree:

When the program is successfully completed and the program qualifications are met, a Bachelor's degree in Mathematics and the title of Mathematician are obtained.

EQF Level: 6

TQF Level: 6 (Qualification placed in TQF on 18/07/2023)

Admission and Registration Requirements:

Student admission is made according to the results of the central exam organized by the Measurement, Selection and Placement Center (ÖSYM) and the principles determined by the Council of Higher Education. Student admission to the program is explained in detail under the heading "Student Admission" in the "About Yeditepe University" section.

Rules on the Recognition of Prior Learning (formal, in-formal, non-formal):

Recognition of prior formal learning in Turkish Higher Education Institutions, vertical, horizontal and intra-university transfers are carried out within the scope of the "REGULATION ON THE PRINCIPLES OF TRANSFER BETWEEN ASSOCIATE AND PROGRAMS IN HIGHER EDUCATION INSTITUTIONS, DOUBLE MAJOR, MINOR AND CREDIT TRANSFER BETWEEN INSTITUTIONS" determined by the Council of Higher Education. In Turkey, the process of recognizing non-formal, certificate-based or experience-based (in-formal, non-formal) learning outside formal education institutions is still in development. For this reason, recognition of prior learning has not been fully initiated in all programs of Yeditepe University.

Qualification Requirements and Rules (Conditions for Success):

Successful completion of all the courses available in the program (equivalent to 240 ECTS in total) and having a GPA of at least 2.00 out of 4.00 is the qualification requirement for graduation.

Program Profile:

Our vision is to form a department, which is highly esteemed by its quality of education both at national and international levels, which renovates itself incessantly according to contemporary progress, and which provides a medium for scientific research at international standards.

T.C.

Main Perspectives of the Undergraduate Program in Mathematics:

1. Providing courses on basic notions of mathematics such as limit, derivative, integral calculus, logic, linear algebra and discrete mathematics,

2. Providing fundamental courses on fundamental sub disciplines and research topics of mathematics such as analysis, algebra, differential equations and differential geometry,

3. Supporting students' formation of their own academic career and future plans by providing a wide range of selected courses portfolio on mathematics and related fields under the supervision of their advisors for choosing and forming their selective courses curriculum.

4. Supporting the development of students' knowledge and skills in non-professional areas, and consciousness of professional and social ethics,

5. Supporting the development of students' ability to become individuals who could make interdisciplinary work and communicate actively,

6.Supporting students 'ability to access information and use information technologies,

7.Supporting students 'ability to transform their academic and social identity acquired during their undergraduate education into a lifelong learning process.

Employment Profiles of Graduates:

A graduate of the Mathematics Program has job opportunities in the following areas:

- at departments of organizations for computing and planning which provides services in any field of activity
- at firms which specializing in topics such as programming, system analysis
- at banking and insurance sector
- at institutions of stock market, financial and capital market instruments
- at institutions of education
- at universities as an academician

Transition to Higher Degree Programs:

Candidates who have successfully completed their undergraduate education can study in graduate programs in their own fields or related fields, provided that they get a valid grade from the ALES exam and have English language skills at the level announced in the application requirements.

Exams, Measurement, and Evaluation:

The types of exams and measurement and evaluation methods for each course in the program are defined in detail in the "Course Teaching Plan". Success grades and coefficients are shown in the table below:

Success Grade	Coefficient
AA	4.0
BA	3.5
BB	3.0
CB	2.5
CC	2.0
DC	1.5
DD	1.0
FA	0.0 Failure (Not eligible to take the exam at the end of the semester due to absenteeism)
FF	0.0 Failure (Failure to pass the final exam)

In addition, the following abbreviations are used according to the students' situation:

a) I- Incomplete: Students who are unable to complete the work required for the course due to valid excuses. These students are required to complete the deficiencies required by the I grade until the end of the add/drop date of the

following semester at the latest; upon completion of the deficiencies, the student receives the required grade, if the deficiencies are not completed by this date, the student's I grade automatically turns into an FF grade.

b) L-Leave: Used for students who are on leave in accordance with the provisions of this Regulation.

c) NC-Non-Credit: Used for non-credit courses.

s) ND-Non-Degree (Non-Degree): It is used for courses that are not intended to receive a diploma from Yeditepe University and are taken with or without credit and are not included in the grade point average calculation.

d) P-Pass (Pass): Students who are successful in courses that are not included in their grade point averages.

e) R-Repeat: Indicates that the lesson is repeated.

f) RR-Repeat to Raise Grade (Repeat Resigned): Awarded for courses repeated to raise the grade.

g) (Change RG. 30.09.2018/305519 sy.) T-Transfer (Transfer): It is given for the courses transferred from a program within or outside the higher education institution or taken from foreign exchange programs and approved by the relevant board of directors and is included in the grade point average calculation.

g) W-Withdrawal: After the add/drop date of the course, within the period specified in the academic calendar each year, with the approval of the advisor.

h) X: In Progress is used when the work of a student is a course extends past the time for reporting grades.

Graduation Requirements:

In order to graduate, undergraduate students must complete the compulsory, specialization/field elective courses and free elective courses in the curriculum (128 credits in total, 240 ECTS) and have a GPA of 2.00 out of 4.00. In case this condition is not met, the students graduate with an average of 2.00 by repeating the courses they have taken in the last four semesters. Graduation GPA is calculated over 4.00 and all courses taken are taken into account when calculating this average. Undergraduate students who complete their education in a maximum of 14 semesters without receiving any F grades or disciplinary penalties, those with a GPA of 3.50 or higher graduate with "**high honors**" and those between 3.00 and 3.49 graduate "**honors**" degree.

Mode of Study: Full-Time

Address and Contact Information:

Head of Department:

Assoc. Prof. İlknur KUŞBEYZİ AYBAR

ikusbeyzi@yeditepe.edu.tr

0216 578 00 00 - 2682

Deputy Head of Department / Education Committee Representative:

Assoc. Prof. Tuğba AKYEL

tugba.akyel@yeditepe.edu.tr

0216 578 00 00

Deputy Head of Department/ Service Courses and Exam Coordinator:

Assist. Prof. Gülce CURAN

gulce.curan@yeditepe.edu.tr

0216 578 00 00 - 2888

Department Secretary:

Burcu EBELER

burcu.ebeler@yeditepe.edu.tr

0 216 578 00 00 - 1671

Address: Yeditepe Üniversitesi, 26 Ağustos Yerleşimi, Fen-Edebiyat Fakültesi, Matematik Bölümü, İnönü Mah., Kayışdağı, 34755, ATAŞEHİR, İSTANBUL, TÜRKİYE

Department Facilities:

There are 2 (two) professors, 2 (two) associate professors, 8 (eight) assistant professors and 5 (five) research assistants in the Department of Mathematics. There is one computer for each employee in each office. There is also a printer to which all computers are connected. The classrooms where the courses are held are suitable for the conditions of the day and contain a projection device. The department also has a barcovision device.

Our students can utilize the resources they need in their studies from computers thanks to the database owned by the university or from the library for written publications. Founded in 1996, Yeditepe University has a library in the rectorate building, covers an area of 6000 square meters and has a seating capacity of 400. There are computer terminals in various parts of the school and students benefit from the computers in these terminals. The 6 computers in the seminar room in the department are available for the use of department students.

Mathematics master's and doctoral programs also provide our students with the opportunity to continue their academic life.

Double Major (DMP) Programs of the Department of Mathematics:

In our department, depending on the sufficient conditions, our students have the opportunity to do a double major with the Departments of Computer Engineering, Industrial Engineering, Genetics and Bioengineering, Physics, History, Information Systems and Technologies, Software Development and Management Information Systems.

Erasmus (Lifelong Learning Program) and Exchange Programs:

Within the framework of Erasmus and Exchange Programs, students may have the opportunity to study at European schools for one semester during their education in the department. In addition, students coming to the department from these countries are also instrumental in continuing the current education and research programs at world standards. Mathematics Department students who want to benefit from this will be able to continue their education at universities with Erasmus agreements for a maximum of two semesters. There are a total of 4 Erasmus agreements for the department. The current list of relevant agreements can be accessed via the link below: https://fenedebivat.veditepe.edu.tr/erasmus-ve-exchange-anlasmalari

Program Learning Outcomes:

PLO1. The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)

PLO2. Acquiring fundamental knowledge on fundamental research fields in mathematics,

PLO3. Ability form and interpret the relations between research topics in mathematics,

PLO4. Ability to define, formulate and solve mathematical problems,

PLO5. Awareness of professional ethics and responsibility,

PLO6. Ability to communicate actively,

PL07. Ability of self-development in fields of interest,

PLO8. Ability to learn, choose and use necessary information technologies,

PLO9. Lifelong education

Department of Mathematics Academic Program:

		FIRST SEMESTER	Т	L	U	Y	A				SECOND	Т	L	U	Y	A
MATTI	4.0.4			0	0		-			100	SEMESTER		0			_
MATH	101	Introduction to Set Theory and Logic	3	0	2	4	7		MATH	102	Basic Algebraic Structures	3	0	2	4	7
MATH	111	Analytical Geometry	3	0	2	4	7		MATH	158	Combinatorics	2	0	2	3	7
MATH	155	Analysis I	3	0	2	4	8		MATH	156	Analysis II	3	0	2	4	8
PHYS	101	Physics I	3	2	0	4	6		PHYS	102	Physics II	3	2	0	4	6
TKL	201	Turkish I	2	0	0	2	2		TKL	202	Turkish II	2	0	0	2	2
						18	30								17	30
		THIRD SEMESTER	Т	L	U	Y	A				FOURTH SEMESTER	Т	L	U	Y	A
MATH	245	Ordinary	3	0	2	4	7		MATH	212	Differential	2	0	2	3	6
		Differential									Geometry					
		Equations														
MATH	255	Calculus III	3	0	2	4	7		MATH	252	Real Analysis I	3	0	2	4	7
MATH	231	Linear Algebra I	3	0	2	4	7		MATH	232	Linear Algebra II	3	0	2	4	7
MATH	201	Mathematical Software I	3	0	0	3	6		MATH	202	Mathematical Software II	3	0	0	3	6
HUM	103	Humanities	2	0	0	2	3		XXX	XXX	Free Elective I	3	0	0	3	4
						17	30								17	30
		FIFTH SEMESTER	Т	L	U	Y	A				SIXTH SEMESTER	Т	L	U	Y	A
MATH	357	Complex Analysis	3	0	2	4	7		MATH	362	Mathematical Probability	2	0	2	3	6
МАТН	321	Introduction to Group Theory	2	0	2	3	6		MATH	322	Abstract Algebra	2	0	2	3	6
MATH	325	Elementary Number Theory	2	0	2	3	6		MATH	343	Partial Differential Equations	2	0	2	3	6
MATH	XXX	Departmental Elective I	3	0	0	3	7		MATH	XXX	Departmental Elective II	3	0	0	3	7
XXX	XXX	Free Elective II	3	0	0	3	4		XXX	XXX	Free Elective III	3	0	0	3	5
						16	30	-							15	30
		SEVENTH	Т	L	U	Y	Α				EIGHTH	Т	L	U	Y	A
		SEMESTER	-								SEMESTER		-	-		
MATH	439	Metric and Topological Spaces	2	0	2	3	7		MATH	456	Functional Analysis	2	0	2	3	9
MATH	491	Senior Project and Seminar	3	0	0	3	7		HTR	302	History of Turkish Revolution II	2	0	0	2	2
HTR	301	History of Turkish Revolution I	2	0	0	2	2		MATH	XXX	Departmental Elective V	3	0	0	3	7
MATH	XXX	Departmental Elective III	3	0	0	3	7		MATH	XXX	Departmental Elective VI	3	0	0	3	7
MATH	XXX	Departmental Elective IV	3	0	0	3	7		XXX	XXX	Free Elective IV	3	0	0	3	5
						14	30								14	30

Relationships Between Mathematics Department Course-Program Learning Outcomes:

	PÇ1	PÇ2	РÇЗ	PÇ4	PÇ5	PÇ6	PÇ7	PÇ8	PÇ9
MATH 101	1	3	5	5	5	3	5	1	5
MATH 102	5	5	5	5	2	1	3	1	3
MATH 111	1	2	5	4	3	3	4	1	3
MATH 155	5	5	5	5	3	0	5	0	3
MATH 156	5	5	5	5	3	0	5	0	3
MATH 158	5	1	1	4	4	1	5	1	4
MATH 201	2	3	3	4	3	3	5	5	5
MATH 202	2	3	3	4	3	3	5	5	5
MATH 212	2	5	5	5	3	3	4	3	3
MATH 231	5	5	5	4	5	3	5	5	5
MATH 232	5	5	5	4	5	3	5	5	5
MATH 245	3	4	3	2	1	1	5	1	3
MATH 252	5	5	5	5	3	3	4	3	3
MATH 255	5	5	5	5	3	3	5	0	0
MATH 321	3	5	5	5	5	2	5	3	5
MATH 322	3	5	5	5	5	2	5	3	5
MATH 325	3	5	5	5	5	3	5	2	5
MATH 343	1	5	4	4	4	1	4	1	3
MATH 357	5	5	3	4	3	2	3	1	2
MATH 362	5	5	3	5	2	3	3	3	4
MATH 439	5	5	5	5	3	3	5	1	3
MATH 456	5	5	5	5	3	3	5	1	3
MATH 491	5	5	5	5	5	5	4	5	5
PHYS 101	4	2	2	4	3	3	4	2	4
PHYS 102	4	2	2	4	3	3	4	2	4
HUM 103	0	0	0	0	3	3	4	0	4
TKL 201	0	0	0	0	3	5	4	0	4
TKL 202	0	0	0	0	3	5	4	0	4
HTR 301	0	0	0	0	3	3	4	0	4

HTR 302	0	0	0	0	3	3	4	0	4
MATH 344	1	4	4	4	4	1	4	1	3
MATH 348	5	2	2	5	4	4	4	2	5
MATH 353	5	5	5	5	3	3	4	3	3
MATH 355	5	5	5	5	3	3	4	3	3
MATH 365	5	2	3	5	3	1	5	4	4
MATH 411	3	5	5	5	3	3	4	3	5
MATH 413	3	5	5	5	5	3	5	2	5
MATH 416	3	5	5	5	5	3	5	2	5
MATH 422	3	5	5	5	5	3	5	2	5
MATH 423	3	5	5	5	5	2	5	3	5
MATH 424	4	5	5	5	3	3	4	3	3
MATH 425	1	5	5	4	4	4	5	1	5
MATH 426	4	5	5	5	3	3	4	3	3
MATH 427	5	5	5	5	4	3	5	5	3
MATH 440	5	5	5	5	3	3	5	3	3
MATH 441	1	5	5	4	4	4	5	1	5
MATH 453	1	5	5	4	4	4	5	1	5
MATH 462	5	5	5	4	4	4	5	1	5

0: Not supported

3: Moderately supported

5: Supported by an advanced level.

Mathematics Department Course Category List:

Course Categories	ECTS
Support courses	
PHYS101 Physics I	6
PHYS102 Physics II	6
Free Elective I	4
Free Elective II	4
Free Elective III	5
Free Elective IV	5
Total	30
Core Courses	
MATH101 Introduction to Set Theory and Logic	7
MATH102 Basic Algebraic Structures	7
MATH111 Analytical Geometry	7
MATH155 Analysis I	8
MATH156 Analysis II	8
MATH158 Combinatorics	7
MATH231 Linear Algebra I	7
MATH232 Linear Algebra II	7
MATH255 Calculus III	7
Total	65
Expertise/ Field Courses	
MATH201 Mathematical Software I	6
MATH202 Mathematical Software II	6
MATH212 Differential Geometry	6
MATH245 Ordinary Differential Equations	7
MATH252 Real Analysis I	7
MATH321 Introduction to Group Theory	6
MATH322 Abstract Algebra	6
MATH325 Elementary Number Theory	6

MATH343 Partial Differential Equations	6
MATH357 Complex Analysis	7
MATH362 Mathematical Probability	6
MATH439 Metric and Topological Spaces	7
MATH456 Functional Analysis	9
MATH491 Senior Project and Seminar	7
MATHXXX Mathematics Elective I	7
MATHXXX Mathematics Elective II	7
MATHXXX Mathematics Elective III	7
MATHXXX Mathematics Elective IV	7
MATHXXX Mathematics Elective V	7
MATHXXX Mathematics Elective VI	7
Total	134
Humanities, Communication and Management Skills Courses	
HUM103 Humanities	3
TKL201 Turkish I	2
TKL202 Turkish II	2
HTR301 History of Turkish Revolution I	2
HTR302 History of Turkish Revolution II	2
Total	11
Total ECTS of all courses	240

Learning and Teaching Methods:

Learning and teaching methods and strategies are selected to increase students' skills such as self-study, lifelong learning, observation, teaching others, presentation, critical thinking, teamwork, student-oriented, developing learning skills through self and peer studies, new learning and teaching methods, encouraging the use of digital tools in learning.

Teaching and Learning Methods	Main Learning Activities	Teaching/Learning Aid
1- Lecture	Listening, comprehending, and processing knowledge	Standard classroom technologies, multimedia devices, projector, computer, overhead projector
2-Interactive Lecture	Listening, comprehending, and processing knowledge, observing/analysing cases, critical thinking, generating questions	Standard classroom technologies, multimedia devices, projector, computer, overhead projector
3- Special Support / Structural Examples	Special set skills/predetermined competencies	Standard classroom technologies, multimedia devices, projector, computer, overhead projector
4-Role-playing/Drama	Special set skills/predetermined playing/Drama competencies	Standard classroom technologies, multimedia devices, projector, computer, overhead projector, and other equipment when necessary
5-Problem Solving	Special set skills/predetermined competencies	
6-Case Study	Special set skills/predetermined competencies	
7-Brainstorming	Listening, comprehending, observing, and analysing cases, critical thinking, generating questions, teamwork	Standard classroom technologies, multimedia devices, projector, computer, overhead projector
8-Peer-work	Listening, comprehending, observing, and analysing cases, critical thinking, generating questions, teamwork	Standard classroom technologies, multimedia devices, projector, computer, overhead projector
9-Demonstration	Listening, comprehending, observing, and analysing cases	Real or virtual setting conducive to observation

10-Simulation	Listening, comprehending, observing, and analysing cases, digital skills	Real or virtual setting conducive to observation
11-Seminar	Research – life-long learning, writing, reading, digital skills, listening and storing information, management skills	Standard classroom technologies, multimedia devices, projector, computer, overhead projector, special equipment
12-Groupwork	Research – life-long learning, writing, reading, digital skills, critical thinking, generating questions, management skills, teamwork	Online databases, library databases, e-mail, online chat, web- based discussion forums
13- Fieldwork	Observing / analysing cases, research – life-long learning, writing, reading	
14- Laboratory	Observing / analysing cases, digital skills, teamwork	Special Equipment
15-Assignments	Research-life long learning, writing, reading, digital skills, management skills	Online databases, library databases, e-mail, web-based discussion forums
16- In-class discussions	Research-life long learning, writing, reading, digital skills, management skills	Standard classroom technologies, multimedia devices, projector, computer, overhead projector, special equipment
17-Text Analysis/ Survey/ Questionnaire	Observing / analysing cases, research – life-long learning, writing, reading	Standard classroom technologies, multimedia devices, projector, computer, overhead projector, corpus tools, digital platforms
18-Panel	Listening and storing information, observing / analysing cases	Standard classroom technologies, multimedia devices, projector, computer, overhead projector, special equipment
19-Guest Lecturer	Listening and storing information, observing / analysing cases	Standard classroom technologies, multimedia devices, projector, computer, overhead projector, special equipment

20- Student Activities / Projects	Observing / analysing cases, critical	
	thinking, generating questions,	
	teamwork, research – life-long	
	learning, writing, reading,	
	management skill sets special skills,	
	group work	

Assessment Methods:

Α	Exam
В	Participation/Discussion
С	Oral Exam
D	Quizzes / Studio Critiques
Е	Field Work/Case study
F	Homework / Assignments
G	Laboratory / Application
Н	Project

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
INTRODUCTION TO SET THEORY AND LOGIC	MATH 101	1	3 + 2	4	7

Prerequisites	-

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Program)
Course Type	Compulsory
Course Coordinator	Neslihan Oflaz Sarıyer
Instructors	Neslihan Oflaz Sarıyer
Assistants	Kaan Emir Uçar
Goals	To teach the usage of analytical tools for mathematical thinking.
Content	Propositional and predicate calculus. Introduction to logic. Methods of proof. Axioms of set theory. Cartesian product, relations and functions. Partial and total orderings. Finite, countable and uncountable sets.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Thinks like a mathematician.	3,4,5	1,2,3,4	А
2) Applies laws of logic in reasoning.	3,7,9	1,2,5,7	А
3) Tests the validity of an argument by using laws of logic.	7,9	1,2,5,7	А
4) Identifies the properties of a given function, relation or an ordering.	3,7,9	1,2,5,7	А
5) Understands that there are different sizes of infinity.	3,4,5	1,2,5,7	А
6) Applies set theory axioms to deduce results about denumerable and uncountable sets.	4,5,7	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Basic connectives and truth tables	Textbook			
2	Logical equivalence: The laws of logic	Textbook			
3	Logical implication: The rules of inference	Textbook			
4	The use of quantifiers	Textbook			

5	Formal thinking: Methods of proof	Textbook
6	Sets, operations on sets	Textbook
7	Ordered pairs and Cartesian product	Textbook
8	Relations	Textbook
9	Ordering relations	Textbook
10	Equivalence relations	Textbook
11	Functions	Textbook
12	Equinumerous sets, Finite sets	Textbook
13	Countable sets	Textbook
14	Uncountable sets	Textbook

RECOMMENDED SOURCES				
Textbook Intro. to Mathematical Structures, Steven Galovich. HBJ				
Additional Resources				

MATERIAL SHARING			
Documents	Yulearn		
Assignments	-		
Exams	2 midterm, 1 final		

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	60		
Quizzes	-	-		
Assignments	-	-		
Final	1	40		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		
Total		100		
		1		

COURSE CATEGORY	Core Courses
-----------------	--------------

	COURSE'S CONTRIBUTION TO PROGRAM						
No			Contribution				
NO	Program Learning Outcomes	1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)	x					
2	Acquiring fundamental knowledge on fundamental research fields in mathematics			x			
3	Ability form and interpret the relations between research topics in mathematics					x	
4	Ability to define, formulate and solve mathematical problems					x	
5	Consciousness of professional ethics and responsibility					x	
6	Ability to communicate actively			x			
7	Ability of self-development in fields of interest					x	
8	Ability to learn, choose and use necessary information technologies	x					
9	Lifelong education					x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	5	70			
Hours for off-the-classroom study (Pre-study, practice)	14	5	70			
Mid-terms (Including self-study)	2	10	20			
Quizzes	-	-	-			
Assignments	-	-	-			
Final examination (Including self-study)	1	15	15			
Total Work Load			175			
Total Work Load / 25 (h)			7			
ECTS Credit of the Course			7			

COURSE INFORMATION							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
BASIC ALGEBRAIC STRUCTURES	MATH 102	2	3+2	4	7		

Prerequisites MATH 101	
------------------------	--

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Mehmet Akif Erdal
Instructors	Mehmet Akif Erdal
Assistants	Melin Özbaylanlı
Goals	To introduce basic algebraic structures and proof techniques
Content	Algebraic structures, integers, rings, fields, groups, homomorphisms and isomorphisms, natural numbers and their properties, rational numbers, real numbers and their properties, complex numbers.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Facilitates abstract thinking	1,2,3,4	1,2,5,7	А
2) Learns proof techniques	1,2,3,4	1,2,5,7	А
3) Recognizes algebraic structures	2,3,4	1,2,5,7	А
4) Interprets relations between algebraic structures	1,2,3,4	1,2,5,7	А

Teaching Methods: 1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming	
Assessment Methods:	A: Exam

	COURSE CONTENT					
Week	Topics	Study Materials				
1	Review of algebraic structures	Textbook				
2	Algebraic properties of integers	Textbook				
3	Rings	Textbook				
4	Fields	Textbook				
5	Groups	Textbook				
6	Homomorphisms and isomorphisms	Textbook				

7	Natural numbers	Textbook
8	Arithmetic and ordering properties of natural numbers	Textbook
9	Integers	Textbook
10	Rational numbers	Textbook
11	Real numbers	Textbook
12	Algebraic and ordering properties of real numbers	Textbook
13	Complex Numbers	Textbook
14	Complex Numbers	Textbook

RECOMMENDED SOURCES				
Textbook	Intro. to Mathematical Structures, Steven Galovich. HBJ.			
Additional Resources				

MATERIAL SHARING				
Documents	Yulearn			
Assignments	-			
Exams	2 midterm, 1 final			

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	2	50			
Quizzes	-				
Assignments	-				
Final	1	50			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50			
Total		100			

Core Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes		Cont	tribu	ition	
		1	2	3	4	5

1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)				x
2	Acquiring fundamental knowledge on fundamental research fields in mathematics				x
3	Ability form and interpret the relations between research topics in mathematics				x
4	Ability to define, formulate and solve mathematical problems				x
5	Consciousness of professional ethics and responsibility		x		
6	Ability to communicate actively	x			
7	Ability of self-development in fields of interest			x	
8	Ability to learn, choose and use necessary information technologies	x			
9	Lifelong education			x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	5	70			
Hours for off-the-classroom study (Pre-study, practice)	14	5	70			
Mid-terms (Including self study)	2	10	20			
Quizzes	-	-	-			
Assignments	-	-	-			
Final examination (Including self study)	1	15	15			
Total Work Load			175			
Total Work Load / 25 (h)			7			
ECTS Credit of the Course			7			

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
ANALYTICAL GEOMETRY	MATH 111	1	3 + 2	4	7	

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Dr. Öğr. Üyesi Derya Çoksak Er
Instructors	Dr. Öğr. Üyesi Derya Çoksak Er
Assistants	Esra Başar
Goals	To give the concepts of vectors and most fundamental analytic geometry (in two and three dimensions) together with some of their properties.
Content	Vectors, linear operations with vectors. Products of vectors. Definition of Euclidean space. Lines and planes. Circle and sphere. Parametrizations of curves and surfaces. Conics and quadrics, their symmetries and classifications. Translations, orthogonal transformations, similarities and inversions.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) calculate vectors and matrices	3,4	1,2	A,B,F
2) solve the problems about lines and planes	4	1,2	A,B,F
3) define conics and obtain canonic equations	3,4	1,2	A,B,F
4) find the tangent planes of quadratic planes	3,4,7	1,2	A,B,F
5) describe quadratic planes with canonic equations	3,4,7	1,2	A,B,F
6) reduce the general quadratic equations to canonic form	3,4,7	1,2	A,B,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture
Assessment Methods:	A: Exam, B: Participation/Discussion, F: Homework Assignments

	COURSE CONTENT			
Week	Topics	Study Materials		
1	Points, oriented segments, parallel translation, vectors, collinear and coplanar vectors,	Textbooks		
2	Linear operations with vectors, linear dependence, coordinates of vectors and	Textbooks		

points.	
Scalar(dot) product of vectors, projection, direction cosines, cosine theorem. Vector product, orientation of plane,	Textbooks
Lagrange identity, area, collinear points, triple (mixed) product,	Textbooks
Volume, double vector product. A definition of affine and Euclidean spaces.	Textbooks
Curves and surfaces, parametric, explicit and implicit equations, geometric locus. Equations of straight lines and planes, normal vectors.	Textbooks
Geometric problems with lines and planes. Menelaos and Ceva theorems. Intersections, angles, skew lines, distances, pencils.	Textbooks
Review and midterm exam,	Textbooks
Circles and spheres, parametric equations, polar, cylindrical and spherical coordinates,	Textbooks
Intersection with a line, secant and tangent, normal, polar line and plane.	Textbooks
Conics: canonical equation of ellipse and hyperbola, focuses and vertices, asymptotes. Directrix, eccentricity, parabola. Parametric equations.	Textbooks
Quadrics: ellipsoid of revolution, hyperboloids, asymptotic cone, elliptic and hyperbolic paraboloids,	Textbooks
Conics and quadrics: affine classification theorem of Gauss.	Textbooks
Review and midterm exam	Textbooks
	Scalar(dot) product of vectors, projection, direction cosines, cosine theorem. Vector product, orientation of plane,Lagrange identity, area, collinear points, triple (mixed) product,Volume, double vector product. A definition of affine and Euclidean spaces.Curves and surfaces, parametric, explicit and implicit equations, geometric locus. Equations of straight lines and planes, normal vectors.Geometric problems with lines and planes. Menelaos and Ceva theorems. Intersections, angles, skew lines, distances, pencils.Review and midterm exam,Circles and spheres, parametric equations, polar, cylindrical and spherical coordinates,Intersection with a line, secant and tangent, normal, polar line and plane.Conics: canonical equation of ellipse and hyperbola, focuses and vertices, asymptotes. Directrix, eccentricity, parabola. Parametric equations.Quadrics: ellipsoid of revolution, hyperboloids, asymptotic cone, elliptic and hyperbolic paraboloids,Conics and quadrics: affine classification theorem of Gauss.

RECOMMENDED SOURCES			
Textbook	I. Vaisman, "Analytical Geometry" H. İ. Karakaş, "Analytic Geometry"		
Additional Resources	 V. Gutenmacher and N. B. Vasilyev, Lines and Curves, Birkhauser 2004, QA 459.G983 2004. C. B. Boyer, History of Analytic Geometry, Dover 1956, QA 551.B813 2004. There are chapters on several books named "calculus and analytical geometry". 		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	2 midterm, 1 final	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	70		
Quizzes	-			
Assignments	-			

1	30
	100
	30
	70
	100
_ _	

Core Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)	X				
2	Acquiring fundamental knowledge on fundamental research fields in mathematics		Х			
3	Ability form and interpret the relations between research topics in mathematics					х
4	Ability to define, formulate and solve mathematical problems				Х	
5	Consciousness of professional ethics and responsibility			Х		
6	Ability to communicate actively			Х		
7	Ability of self-development in fields of interest				Х	
8	Ability to learn, choose and use necessary information technologies	Х				
9	Lifelong education			Х		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	5	70	
Hours for off-the-classroom study (Pre-study, practice)	14	5	70	
Mid-terms (Including self study)	2	10	20	
Assignments	-	-	-	
Final examination (Including self study)	1	15	15	
Total Work Load			175	
Total Work Load / 25 (h)			7	
ECTS Credit of the Course			7	

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
ANALYSIS I	MATH 155	1	3 + 2	4	8

tes -	Prerequisites
-------	---------------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Melike İşim Efe
Instructors	Melike İşim Efe
Assistants	Sefer Furkan Şahin
Goals	To teach the students the concepts of limits, derivatives and integrals of functions of a single variable and have them maintain the ability to make calculations in these issues, which are the fundamental knowledge that is necessary for main research areas in mathematics.
Content	Introduction to calculus, sequences, series, convergence. Functions limits and derivatives. Differentiation rules, the chain rule, implicit differentiation, linear approximations. Applications of differentiation, minimum and maximum values, shapes of curves, optimization, applications to business and economics.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Learns the concept of limit, continuity	1,2,4,7	1,2,5,7	А
2) Learns the concept of convergence of sequences and series	2,4,7	1,2,5,7	А
3) Evaluates derivatives	1,2,4,7	1,2,5,7	А
4) Uses derivative to find extremum	1,4,7	1,2,5,7	А
5) Uses L'Hospital rule to evaluate limits	4,7	1,2,5,7	А
6) Calculates using the Fundamental Theorem of Calculus	1,2,4,7	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT		
Week	Topics	Study Materials	
1	Introduction to Calculus		

2	Sequences, Series, Limit	
3	Functions, Composition of Functions, Inverse Functions	
4	Exponential Functions and Logarithms	
5	Trigonometric Functions	
6	The Limit of a function, Calculating limits using limit Laws	
7	Continuity, Limits involving infinity	
8	Tangents, Velocities, and Other Rates of Change, Derivatives, The Derivative as a Function	
9	What Does f' say about f? Derivatives of Polynomials and Exponential Functions, The Product and Quotient Rules	
10	Derivatives of Trigonometric Functions, The Chain Rule	
11	Implicit Differentiation, Derivatives of Logarithmic Functions ,Linear Approximations, Taylor Polynomial	
12	Maximum and Minimum Values	
13	Graphing with Calculus and Calculators	
14	Intermediate Forms and L'Hospital's Rule, Optimization Problems, Applications to Business and Economics	

RECOMMENDED SOURCES		
Textbook	Calculus, Concepts & Contexts by James Stewart, 7 th edition.	
Additional Resources		

MATERIAL SHARING			
Documents	Yulearn		
Assignments	-		
Exams	1 midterm, 1 final		

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	40	
Quizzes	-	-	
Assignments	-	-	
Final	1	60	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	60	

CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	40
Total	100

Core Courses

COURSE'S CONTRIBUTION TO PROGRAM						
No Program Learning Outcomes Cont				tribution		
			2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			X		
6	Ability to communicate actively			X		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies	X				
9	Lifelong education			X		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	5	70	
Hours for off-the-classroom study (Pre-study, practice)	14	6	84	
Mid-terms (Including self study)	1	20	20	
Quizzes	-	-	-	
Assignments	-	-	-	
Final examination (Including self study)	1	25	25	
Total Work Load			199	
Total Work Load / 25 (h)			7,99	
ECTS Credit of the Course			8	

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
ANALYSIS II	MATH 156	2	3 +2	4	8	

Prerequisites	MATH 155

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Barış Efe
Instructors	Barış Efe
Assistants	Melin Özbaylanlı
Goals	To teach integration techniques and some applications of integrals such as calculating areas and volumes. To teach sequences and series and their convergence and divergence.
Content	General review. Integrals; Fundamental theorem of calculus, integration by parts, approximate integration, improper integrals. Applications of integration; Areas, volumes, arc length, average value of a function, other applications. Infinite sequences and series; sequences, series, convergence tests, representations of functions as power series Taylor and Maclaurin series.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Evaluates the integrals of functions of single variable.	1,2,4,7	1,2,5,7	А
2) Uses integrals to evaluate areas and volumes.	1,2,7	1,2,5,7	А
3) Learns the notion of convergence of a series.	2,4,7	1,2,5,7	А
4) Represents some functions with power series.	1,2,4,7	1,2,5,7	А
5) Calculates partial derivatives of multi variable functions.	1,4,7	1,2,5,7	А
6) Calculates local and global minimum and maximum values.	1,2,4,7	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Definite integral and indefinite integral				

2	Fundamental theorem of calculus, substitution, integration by parts
3	Trigonometric substitutions, integrals of rational functions
4	Areas of plane regions, improper integral
5	Volume, arclength and surface area
6	The algebraic and order properties of real numbers
7	The completeness property. applications of the supremum property
8	Sequences and their limits, limit theorems for sequences
9	Monotone sequences, subsequences and the Bolzano-Weierstrass theorem.
10	Cauchy sequences, the Cauchy criterion
11	Infinite series, series with positive terms. comparison tests
12	Tests for convergence
13	Absolute and conditional convergence
14	Power series, Taylor series and applications

RECOMMENDED SOURCES				
Textbook	James Stewart, Calculus: Concepts and Contexts, 2nd Edition			
Additional Resources				

MATERIAL SHARING					
Documents	Yulearn				
Assignments	-				
Exams	1 midterm, 1 final				

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	40	
Quizzes	-		
Assignments	-		
Final	1	60	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40	
Total		100	

COURSE CATEGORY Core Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	Program Learning Outcomes			Contribution			
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x	
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x	
3	Ability form and interpret the relations between research topics in mathematics						
4	Ability to define, formulate and solve mathematical problems					x	
5	Consciousness of professional ethics and responsibility			x			
6	Ability to communicate actively						
7	Ability of self-development in fields of interest			x			
8	Ability to learn, choose and use necessary information technologies						
9	Lifelong education			x			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	5	70
Hours for off-the-classroom study (Pre-study, practice)	14	6	84
Mid-terms (Including self study)		20	20
Quizzes	-		
Assignments	-		
Final examination (Including self study)	1	25	25
Total Work Load			199
Total Work Load / 25 (h)			7,99
ECTS Credit of the Course			8

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
COMBINATORICS	MATH 158	2	2 + 2	3	7

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Derya Çoksak Er
Instructors	Derya Çoksak Er
Assistants	
Goals	The aim of this course is to introduce the topics and techniques of discrete methods and combinatorial reasoning with wide variety of applications.
Content	Fundamental principle of counting. Introduction to discrete probability. Pigeonhole principle. The principle of inclusion and exclusion. Recurrence relations. Introduction to graph theory. Languages and finite state machines.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Understands and solves problems in counting using the basic principles of counting.	1,2,4,7	1,2,5,7	А
2) Uses the principle of inclusion and exclusion to solve related problems indirectly.	1,2,7	1,2,5,7	А
3) Solves first-order linear recurrence relations, second-order linear homogeneous recurrence relations with constant coefficients and some particular nonhomogeneous recurrence relations.	2,4,7	1,2,5,7	А
4) Models a given particular situation or a problem using graph theory.	1,2,4,7	1,2,5,7	А
5) Decides whether or not given graphs are isomorphic.	1,4,7	1,2,5,7	А
6) Understands the structure of languages and finite state machines.	1,2,4,7	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT			
Week	Topics	Study Materials		

1	The rules of sum and product. Permutations	1.1, 1.2
2	Combinations. The binomial theorem. Combinations with repetition	1.3, 1.4
3	The pigeonhole principle	5.5
4	Well ordering principle, Mathematical Induction	4.1, 4.2
5	Division Algorithm. The Euclidean Algorithm. The Fundamental Theorem of Arithmetic	4.3, 4.4, 4.5
6	The Principle of Inclusion and Exclusion	8.1, 8.2
7	Generating Functions	9.1, 9.2
8	Partition of integers,	9.3, 9.4
9	The first-order linear recurrence relation	10.1
10	The second-order linear homogeneous recurrence relation with constant coefficients	10.2
11	The nonhomogeneous recurrence relation	10.3
12	The method of generating functions	10.4
13	Graph theory: Graphs ,Subgraphs, Complements, Graph Isomorphisms	11.1
14	Languages: Finite state machine.	6.1, 6.2, 6.3

RECOMMENDED SOURCES				
Textbook	(I)	Discrete and Combinatorial Mathematics, 5th Ed. R. P. Grimaldi, Pearson. 2013.		
Additional Resources	(11)	Discrete Mathematics and Its Applications, K. H. Rosen, Mc Graw Hill, 6th edition, 2007.		

MATERIAL SHARING				
Documents	Yulearn			
Assignments	-			
Exams	1 midterm, 1 final			

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	40		
Quizzes	-	-		
Assignments	-	-		
Final	1	60		
Total		100		

CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	60
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	40
Total	100

|--|

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes Contribution		ition			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x
2	Acquiring fundamental knowledge on fundamental research fields in mathematics	x				
3	Ability form and interpret the relations between research topics in mathematics	x				
4	Ability to define, formulate and solve mathematical problems				x	
5	Consciousness of professional ethics and responsibility				x	
6	Ability to communicate actively	x				
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies	x				
9	Lifelong education				x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	4	56	
Hours for off-the-classroom study (Pre-study, practice)	14	6	84	
Mid-terms (Including self study)	1	15	15	
Quizzes	-	-	-	
Assignments	-	-	-	
Final examination (Including self study)	1	20	20	
Total Work Load			175	
Total Work Load / 25 (h)			7	
ECTS Credit of the Course			7	

E.

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
MATHEMATICAL SOFTWARE I	MATH 201	1	3 + 0	3	6

Prerequisites	-

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programs)
Course Type	Compulsory
Course Coordinator	Neslihan Oflaz Sarıyer
Instructors	Neslihan Oflaz Sarıyer
Assistants	-
Goals	To provide information about mathematical typesetting, symbolic computation and numerical computation software.
Content	Fundamentals of Latex, Maxima and Octave software

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) To learn using Latex software	7,8,9	1,2,5,7	A,F,H
2) To learn using Maxima software	7,8,9	1,2,5,7	A,F,H
3) To learn using Octave software	7,8,9	1,2,5,7	A,F,H
4) To learn using symbolic computation software	8,9	1,2,5,7	A,F,H
5) To learn using numerical computation software	7,8	1,2,5,7	A,F,H

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam, F: Homework/Assignment, H: Project

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Basics; LATEX Input Files; Input File Structure; Command lines; The Layout of the Document; Document classes; Packages	The Not So Short Introduction to LATEX2e, Chapter 1			
2	Typesetting Text ; The Structure of Text and Language; Line breaking and page breaking ; Justified Paragraphs ; Hyphenation; Readymade Strings; Special Characters and Symbols; International Language Support ; The Space between Words; Titles, Chapters, and Sections; Cross References; Footnotes; Emphasized Words; Environments; Floating Bodies; Protecting fragile	The Not So Short Introduction to LATEX2e, Chapter 2			

	commands.	
3	Typesetting Mathematical Formulae; Grouping in Math Mode; Building Blocks of a Mathematical Formula; Math Spacing; Vertically Aligned Material; Phantom: Math Font Size; Theorems, Laws; Bold symbols; List of Mathematical Symbols.	The Not So Short Introduction to LATEX2e, Chapter 3
4	Including EPS Graphics; Bibliography; Indexing; Fancy Headers; The Verbatim Package; Downloading and Installing LATEX Packages.	The Not So Short Introduction to LATEX2e, Chapter 4
5	Introduction, Available interfaces to Maxima, The Basics	The Maxima Book, Chapters 1,2,3,
6	Trig through Calculus; Advanced Mathematics - ODEs and Beyond; Matrix Operations and Vectors	The Maxima Book, Chapters 4,5,6
7	Introduction to Maxima's Programming Language;	The Maxima Book, Chapter 7
8	Graphics and Forms of Output	The Maxima Book, Chapter 8
9	Additional Packages	The Maxima Book, Chapters 13, 14, 15, 17
10	Getting started,	Introduction to GNU Octave, Chapter 1
11	Matrices and Linear Systems	Introduction to GNU Octave, Chapter 2
12	Single variable calculus	Introduction to GNU Octave, Chapter 3
13	Eigenvalue problems	Introduction to GNU Octave, Chapter 5
14	Multivariable calculus and differential equations	Introduction to GNU Octave, Chapter 6

RECOMMENDED SOURCES						
TextbookThe Not So Short Introduction to LATEX2e, Or LATEX2" in 95 minutes; Tobia Hubert Partl, Irene Hyna and Elisabeth Schlegl; Version 3.20, 09 August, 2001 The Maxima Book; Paulo Ney de Souza, Richard J. Fateman, Joel Moses, Cliff Ya Introduction to GNU Octave, A brief tutorial for linear algebra and calculus Jason Lachniet, Wytheville Community College, Third Edition						
Additional Resources	The Latex Companion, 2nd Edition, Frank Mittelbach and Michel Goossens					

MATERIAL SHARING				
Documents	Yulearn			
Assignments	3 assignments			
Exams	2 midterm, 1 final			

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	2	40			
Quizzes		-			
Assignments	3	20			
Final	1	40			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

Expertise/Field Courses

COURSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes	Contribution					
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)		x				
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x	
3	Ability form and interpret the relations between research topics in mathematics					x	
4	Ability to define, formulate and solve mathematical problems					x	
5	Consciousness of professional ethics and responsibility			x			
6	Ability to communicate actively			x			
7	Ability of self-development in fields of interest				x		
8	Ability to learn, choose and use necessary information technologies			x			
9	Lifelong education			x			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	3	42			
Hours for off-the-classroom study (Pre-study, practice)	14	3	42			
Mid-terms (Including self-study)	2	12	24			

Quizzes	-	-	-
Assignments	3	7	21
Final examination (Including self-study)	1	21	21
Total Work Load			150
Total Work Load / 25 (h)			6
ECTS Credit of the Course			6

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
MATHEMATICAL SOFTWARE II	MATH 202	2	3 + 0	3	6	

Prerequisites	-
Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Neslihan Oflaz Sarıyer
Instructors	Neslihan Oflaz Sarıyer
Assistants	-
Goals	Symbolic and numerical computation by using Python language
Content	Fundamentals of Python language and its modules NumPy, SymPy and MatPlotlib

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) To learn basics of Python language	1,4,5,7,8,9	1,2,5,7	A,F,H
2) To learn numerical computation by using NumPy module	4,5,7	1,2,5,7	A,F,H
3) To learn symbolic computation by using SymPy module	7,8,9	1,2,5,7	A,F,H
4) To learn plotting graphs of functions by using MatPlotLib module	1,4,5,9	1,2,5,7	A,F,H

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming	
Assessment Methods:	A: Exam, F: Homework/Assignment, H: Project	

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Python Basics	[T1] Chapter 1			
2	Variables and Basic Data Structures	[T1] Chapter 2			
3	Functions	[T1] Chapter 3			
4	Branching Statements; Iteration	[T1] Chapter 4-5			
5	Class and Object; Round-Off Errors	[T1] Sections 7.2, 9.3			

6	Visualization and Plotting; MIDTERM EXAM 1	[T1] Chapter 12
7	Linear Algebra and Systems of Linear Equations	[T1] Chapter 14
8	Eigenvalues and Eigenvectors	[T1] Chapter 15
9	Creating and manipulating expressions by using SymPy	[T2] pp.17-28
10	Calculus with SymPy	[T2] pp.31-34
11	Solving equations by SymPy; MIDTERM EXAM 2	[T2] pp.35-37
12	Taylor Series; Root Finding	[T1] Chapter 18-19
13	Numerical Differentiation; Numerical Integration	[T1] Chapter 20-21
14	Ordinary Differential Equations (ODEs) Initial-Value Problems	[T1] Chapter 22

RECOMMENDED SOURCES					
Textbook	 [T1] Kong, Qingkai, et al. Python Programming and Numerical Methods: A Guide for Engineers and Scientists. Academic Press, 2021. [T2] Lamy, Ronan. Instant SymPy Starter: Learn to Use SymPy's Symbolic Engine to Simplify Python Calculations. Packt Publishing, 2013. 				
Additional Resources					

MATERIAL SHARING				
Documents	Yulearn			
Assignments	3 assignments			
Exams	2 midterm, 1 final			

ASSESSMENT					
NUMBER	PERCENTAGE				
2	40				
-	-				
3	20				
1	40				
	100				
	40				
	60				
	100				
	2 3				

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes Contribution			on		
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)		x			
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			x		
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest				x	
8	Ability to learn, choose and use necessary information technologies			x		
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration (14x Total course hours)	14	3	42		
Hours for off-the-classroom study (Pre-study, practice)	14	3	42		
Mid-terms (Including self study)	2	12	24		
Quizzes	-	-	-		
Assignments	3	7	21		
Final examination (Including self study)	1	21	21		
Total Work Load			150		
Total Work Load / 25 (h)			6		
ECTS Credit of the Course			6		

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
DIFFERENTIAL GEOMETRY	MATH 212	2	2 + 2	3	6	

Prerequisites	MATH 255
---------------	----------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	İlker Savaş Yüce
Instructors	İlker Savaş Yüce
Assistants	-
Goals	To provide information about the local and global structures of curves and surfaces in three dimensions.
Content	Curves in plane and 3-space, the local theory of curves, Serret-Frenet formulas. Closed curves, isoperimetric inequality and four-vertex theorem. Surfaces, first and second fundamental forms. Geometry of Gauss map. Structure equations. Theorema Egregium. Formulation with differential forms. Gauss-Bonnet theorem. Intrinsic and extrinsic geometry of surfaces.

Program Learning Outcomes	Teaching Methods	Assessment Methods
1,2,3,4,9	1,2,5,7	А
1,2,3,4,9	1,2,5,7	А
2,3,4,9	1,2,5,7	А
2,3,4,9	1,2,5,7	А
1,2,3,4,9	1,2,5,7	А
1,2,3,4,9	1,2,5,7	А
	Learning Outcomes 1,2,3,4,9 1,2,3,4,9 2,3,4,9 2,3,4,9 1,2,3,4,9 1,2,3,4,9 1,2,3,4,9 1,2,3,4,9	Learning Outcomes Methods 1,2,3,4,9 1,2,5,7 1,2,3,4,9 1,2,5,7 2,3,4,9 1,2,5,7 2,3,4,9 1,2,5,7 2,3,4,9 1,2,5,7 1,2,3,4,9 1,2,5,7 1,2,3,4,9 1,2,5,7 1,2,3,4,9 1,2,5,7 1,2,3,4,9 1,2,5,7 1,2,3,4,9 1,2,5,7

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT	
Week	Topics	Study Materials
1	Local Curve Theory in 2D	From textbook 2.1-

		2.3
2	Local Curve Theory in 3D	2.4-2.6
3	Global Theory of Plane Curves	3.1-3.3
4	Global Theory of Plane Curves	3.4-3.6
5	MIDTERM and discussion of solutions	
6	Local Surface Theory (First and Second Fundamental Forms)	4.1-4.3, 4.7
7	Local Surface Theory (Parallelism and Curvatures)	4.4-4.6, 4.8,
8	Local Surface Theory (Fundamental Theorem of Surfaces)	4.10
9	Local Surface Theory (Theorema Egregium)	4.9
10	MIDTERM and discussion of solutions	
11	Global Theory of Space Curves	5.1-5.3
12	Global Theory of Surfaces (Curvature, Orientability)	6.1-6.3
13	Global Theory of Surfaces (Gauss-Bonnet Formula)	6.4-6.6
14	Global Theory of Surfaces (Index of a Vector Field)	6.7

RECOMMENDED SOURCES			
Textbook	R.S. Millman, G.D. Parker, Elements of Differential Geometry, Pearson, 1977		
Additional Resources			

MATERIAL SHARING			
Documents	Yulearn		
Assignments	-		
Exams	2 midterm, 1 final		

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	60		
Quizzes	-	-		
Assignments	-	-		
Final	1	40		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		

Total

COURSE CATEGORY

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes	Contribution				
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)		x			
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			x		
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest				x	
8	Ability to learn, choose and use necessary information technologies			x		
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	4	56
Hours for off-the-classroom study (Pre-study, practice)	14	4	56
Mid-terms (Including self study)	2	10	20
Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	18	18
Total Work Load			150
Total Work Load / 25 (h)			6
ECTS Credit of the Course			6

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
LINEAR ALGEBRA I	MATH 231	1	3 + 2	4	7	

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Barış Efe
Instructors	Barış Efe
Assistants	Melin Özbaylanlı
Goals	To provide tools for dealing with problems in many fields from a variety of disciplines and to serve as a bridge from the typical intuitive treatment of calculus to more rigorous courses such as abstract algebra and analysis.
Content	Matrices and systems of linear equations. Vector spaces; subspaces, sums and direct sums of subspaces. Linear dependence, bases, dimension, quotient spaces. Linear transformations, kernel, range, isomorphism. Spaces of linear transformations. Representations of linear transformations by matrices. Determinants. Inverse of a matrix. Eigenvalues and eigenvectors. Diagonalization of a matrix.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Solves the systems of linear equations using matrices.	1,2,7	1,2,5,7	А
2) Determines spanning sets for a given vector space.	1,2	1,2,5,7	А
3) Applies Gram-Schmidt Process to an independent set of vectors to obtain an orthogonal set.	1,2,4,7	1,2,5,7	А
4) Determines if a given matrix is nonsingular.	1,2	1,2,5,7	А
5) Uses elementary matrices to compute the inverse of a matrix.	1,2	1,2,5,7	А
6) Uses determinant and adjoint to compute the inverse of a matrix.	1,2	1,2,5,7	А
7) Diagonalizes a matrix	1,2	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT	
Week	Topics	Study Materials

1	Vectors and linear equations. The idea of elimination	Textbook
2	Elimination using matrices	Textbook
3	Rules for matrix operations, inverse matrices	Textbook
4	LU-decomposition, transposes and permutations	Textbook
5	Spaces of vectors,	Textbook
6	Nullspace of A, The complete solution to Ax=b	Textbook
7	Independence, basis and dimension,	Textbook
8	Dimensions of the four subspaces	Textbook
9	Orthogonality of the four subspaces	Textbook
10	Projections, orthonormal bases and Gram-Schmidt orthonormalization process	Textbook
11	The properties of determinants, permutations and cofactors,	Textbook
12	Cramer's rule, inverses and volumes	Textbook
13	Introduction to eigenvalues,	Textbook
14	Diagonalizing a matrix	Textbook

RECOMMENDED SOURCES			
Textbook	Gilbert Strang - Introduction to Linear Algebra Fifth Edition-Wellesley-Cambridge Press (2016)		
Additional Resources			

MATERIAL SHARING			
Documents	Yulearn		
Assignments	-		
Exams	1 midterm, 1 final		

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	40	
Quizzes	-		
Assignments	-		
Final	1	60	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40	

 Total
 100

 COURSE CATEGORY
 Core Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	No Program Learning Outcomes		Contribution				
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x	
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x	
3	Ability form and interpret the relations between research topics in mathematics					x	
4	Ability to define, formulate and solve mathematical problems				x		
5	Consciousness of professional ethics and responsibility					x	
6	Ability to communicate actively			x			
7	Ability of self-development in fields of interest					x	
8	Ability to learn, choose and use necessary information technologies					x	
9	Lifelong education					x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	5	70
Hours for off-the-classroom study (Pre-study, practice)	14	5	70
Mid-terms (Including self study)	1	15	15
Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	20	20
Total Work Load			175
Total Work Load / 25 (h)			7
ECTS Credit of the Course			7

COURSE INFORMATION						
Course Title	Code	de Semester L+P Hou		Credits	ECTS	
LINEAR ALGEBRA II	MATH 232	2	3 + 2	4	7	

Prerequisites	MATH 231
---------------	----------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Barış Efe
Instructors	Barış Efe
Assistants	Esmanur Yıldız Akıl
Goals	To provide tools for dealing with problems in many fields from a variety of disciplines and to serve as a bridge from the typical intuitive treatment of calculus to more rigorous courses such as abstract algebra and analysis.
Content	Characteristic and minimal polynomials of an operator, eigenvalues, diagonalizability, canonical forms, Jordan and rational forms of matrices. Inner product spaces, norm and orthogonality, projections. Linear operators on inner product spaces, adjoint of an operator, normal, self adjoint, unitary and positive operators. Bilinear and quadratic forms.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Determines if a given set is independent and/or spanning set.	1,2	1,2,5,7	А
2) Constructs an orthonormal basis for a given vector space.	1,2,4	1,2,5,7	А
3) Determines if a given linear transformation is injective, surjective or invertible.	1,2	1,2,5,7	А
4) Represents a linear transformation by matrices and obtains information about transformation by using these representations.	1,2,4	1,2,5,7	А
5) Determines if a matrix is diagonalizable and if it is, diagonalizes the matrix.	1,2,4	1,2,5,7	А
6) Computes the Jordan canonical form of a matrix.	1,2	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT			
Week	Topics	Study Materials		

1	Vector spaces, subspaces	Textbook
2	Bases, dimension and coordinates.	Textbook
3	Linear transformations, the algebra of linear transformations	Textbook
4	Isomorphism, the representation of linear transformations by matrices	Textbook
5	Linear functionals, the double dual, the transpose of a linear transformation	Textbook
6	Determinant functions, permutations and uniqueness of determinants,	Textbook
7	Additional properties of determinants	Textbook
8	Elementary canonical forms, characteristic values, annihilating polynomials, invariant subspaces,	Textbook
9	Direct sum decompositions, invariant direct sums,	Textbook
10	Primary decomposition theorem	Textbook
11	Cyclic subspaces and annihilators,	Textbook
12	Cyclic decompositions and the rational form	Textbook
13	The Jordan form	Textbook
14	Computation of invariant factors	Textbook

RECOMMENDED SOURCES			
Textbook	Kenneth M Hoffman, Ray Kunze - Linear Algebra Second Edition -Prentice Hall (1971)		
Additional Resources			

MATERIAL SHARING		
Documents	Yulearn	
Assignments		
Exams		

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	40		
Quizzes	-	-		
Assignments	-	-		
Final	1	60		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60		

CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	40
Total	100

COURSE CATEGORY

Core Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes	Contribution				
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems				x	
5	Consciousness of professional ethics and responsibility					x
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies					x
9	Lifelong education					x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	5	70
Hours for off-the-classroom study (Pre-study, practice)		5	70
Mid-terms (Including self study)	1	15	15
Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	20	20
Total Work Load			175
Total Work Load / 25 (h)			7
ECTS Credit of the Course			7

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
ORDINARY DIFFERENTIAL EQUATIONS	MATH 245	1	3 + 2	4	7

Prerequisites	MATH 156
---------------	----------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Melike İşim Efe
Instructors	Melike İşim Efe
Assistants	Dilara Karshoğlu
Goals	Determining the type of a given first or higher order differential equation, examining the existence and uniqueness solution and being able to select the appropriate analytical technique for finding the solution if it can be obtained. Understanding the fundamental theorems of differential equations, understanding Laplace transform and application to differential equations, Finding an infinite series solution to a given differential equation
Content	First order equations and various applications. Higher order linear differential equations. Power series solutions: ordinary and regular singular points. The Laplace transform: solution of initial value problems. Systems of linear differential equations: solutions by operator method, by Laplace transform.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Can classify the first and higher order ordinary differential equations.	2,3	1,2,5,7	А
2) Can determine the appropriate solution method for a given differential equation.	1,2,4,7	1,2,5,7	А
3) Can investigate the existence and uniqueness of solutions for initial value problems.	2,3,4,7	1,2,5,7	А
4) Can use Laplace transforms.	1,2,4,7	1,2,5,7	А
5) Can determine an infinite series solution for a given differential equation.	1,2,4,7	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

COURSE CONTENT		
Week	Topics	Study Materials

1	Introduction, Solution of Differential Equations, Classification of DEs, Initial and Boundary conditions. Separable equations.	Course book, Chapter 1, 2.2
2	Homogeneous, Linear 1 st Order Differential Equations, Bernoulli, Ricatti equations	2.2,2.1,2.4
3	Clairaut Differential Equations Exact Differential Equations and Integrating Factors	2.6
4	Existence and Uniqueness Theorem for 1 st order ODEs, discontinuous coefficient, forcing function	2.4,2.8
5	Higher Order Linear ODEs Homogeneous Eqs with constant coefficients Existence and Uniqueness for general higher order equations	3.1,3.2,4.1
6	Midterm I Fundamental Set of Solutions of linear Homogeneous DE s, Linear Independence, Wronskian, Complex roots of the characteristic equation, Reduction of Order,	- 3.2,3.3,3.4
7	Repeated roots of characteristic equation for constant coefficient homogenous equation Cauchy-Euler Equation	3.5,5.5,3.6
8	Linear Non-Homogeneous DE s (Method of Undetermined Coefficients), Variation of Parameters	4.3,3.7
9	Definition of Laplace Transform, Solution of Initial Value Problems, Step Functions	6.1,6.2,6.3
10	Midterm II , Differential Equations with discontinuous forcing functions,	- 6.4
11	Impulse Function, The Convolution Integral, Review of Power Series, Ordinary Points, Singular Points	6.5,6.6,5.1
12	Series Solutions near an Ordinary Point, Regular Singular Points, Series Solutions near a Regular Singular Point,	5.2, 5.3,5.4
13	Bessel, Legendre, Hermite, Chebyshev Equation	5.5,5.6
14	System of differential equations	7.1, ch 6

RECOMMENDED SOURCES		
Textbook	Elementary Differential Equations and Boundary Value Problems, W. E. Boyce and R. C. DiPrima, John Wiley and Sons, 2009	
Additional Resources		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	1 midterm, 1 final	

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	1	40
Quizzes	-	
Assignments	-	
Final	1	60
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60
Total		100

COURSE	CATEGORY
COOLDE	on nu do nu

	COURSE'S CONTRIBUTION TO PROGRAM						
No	No Program Learning Outcomes			Contribution			
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			Х			
2	Acquiring fundamental knowledge on fundamental research fields in mathematics				Х		
3	3 Ability form and interpret the relations between research topics in mathematics			Х			
4	Ability to define, formulate and solve mathematical problems		Х				
5	Consciousness of professional ethics and responsibility	х					
6	Ability to communicate actively	х					
7	Ability of self-development in fields of interest					Х	
8	Ability to learn, choose and use necessary information technologies	Х					
9	Lifelong education			Х			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration (14x Total course hours)	14	5	70		
Hours for off-the-classroom study (Pre-study, practice)	14	5	70		
Mid-terms (Including self study)	1	15	30		

Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	20	20
Total Work Load			175
Total Work Load / 25 (h)			7
ECTS Credit of the Course			7

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
REAL ANALYSIS I	MATH 252	1	3 +2	4	7	

-	
Prereq	uisites

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programs)
Course Type	Compulsory
Course Coordinator	Mehmet Akif Erdal
Instructors	Mehmet Akif Erdal
Assistants	Esra Başar
Goals	This course constitutes the pillar of many topics in mathematics such as complex analysis, differential equations, differential and integral calculus, and differential geometry. It is impossible to assimilate these areas of mathematics without having this basic knowledge of analysis. The aim of the course is to equip students with this basic knowledge.
Content	Limits of functions, continuous functions. Inverse function theorem, sequences of functions, uniform convergence. Cauchy criterion for uniform convergence. The derivative, the mean value theorem, L'Hospital rules, Taylor's theorem. Riemann sum, Riemann integrability. Boundedness theorem. Riemann Integrable Functions, Cauchy Criterion. Squeeze Theorem, Classes of Riemann Integrable Functions. Additivity Theorem, The Fundamental Theorem of Calculus. Substitution Theorem, Lebesgue's Integrability Criterion. Integration by Parts, Taylor's Theorem with the Remainder

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Grasp the structure of the real numbers as a complete ordered field	2,3	1,2,5,7	A,F
2) Learn how to handle the convergence of sequences, series	1,2,4,7	1,2,5,7	A,F
3) Master the concept of the limit of functions and the concept of continuity;	2,3,4,7	1,2,5,7	A,F
4) Acquire the knowledge of differentiability of functions	1,2,4,7	1,2,5,7	A,F
5) Learn integration and classes of Riemann integrable functions	1,2,4,7	1,2,5,7	A,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam, F: Homework /Assignments

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Limits of Functions, Limit Theorems, Cauchy Convergence criterion	Textbook			
2	Continuous Functions, Combinations of Continuous Functions, Continuous Functions on Intervals	Textbook			
3	Uniform Continuity. Monotone functions. Inverse Function Theorem	Textbook			
4	Continuous and Monotone Functions, Sequences of Functions, Pointwise and Uniform Convergence	Textbook			
5	Cauchy Criterion for Uniform Convergence	Textbook			
6	The Derivative, The Mean Value Theorem, L'Hospital Rules, Taylor's Theorem	Textbook			
7	Partitions and Tagged Partitions, Riemann sum, Riemann integrability	Textbook			
8	Some Properties of the Integral, Boundedness Theorem	Textbook			
9	Riemann Integrable Functions, Cauchy Criterion,	Textbook			
10	Squeeze Theorem, Classes of Riemann Integrable Functions	Textbook			
11	Additivity Theorem, The Fundamental Theorem of Calculus,	Textbook			
12	Substitution Theorem, Lebesgue's Integrability Criterion,	Textbook			
13	Composition Theorem, The Product Theorem,	Textbook			
14	Integration by Parts, Taylor's Theorem with the Remainder	Textbook			

RECOMMENDED SOURCES				
Textbook	Robert G. Bartle,Donald R. Sherbert, Introduction to Real Anlaysis , Fourth Edition, John Wiley & Sons, Inc.(2011),ISBN-13: 978-0471433316ISBN-10: 9780471433316. <u>https://sciencemathematicseducation.files.wordpress.com/2014/01/0471433314real</u> <u>analysis4.pdf</u>			
Additional Resources	Stephen Abbott, Understanding Analysis, Springer, 2. Edition (2015)			

MATERIAL SHARING			
Documents	Yulearn		
Assignments	3 assignments		
Exams	2 midterm, 1 final		

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	2	40			
Quizzes		-			

Assignments	3	20
Final	1	40
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60
Total		100

COURSE	CATEGORY

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes Contribution			on		
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			x		
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest				x	
8	Ability to learn, choose and use necessary information technologies			x		
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	5	70	
Hours for off-the-classroom study (Pre-study, practice)	14	4	56	
Mid-terms (Including self-study)	2	10	20	
Assignments	3	5	15	
Final examination (Including self-study)	1	15	15	
Total Work Load			176	
Total Work Load / 25 (h)			7.04	
ECTS Credit of the Course			7	

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
CALCULUS III	MATH 255	1	3 + 2	4	7

Prerequisites	MATH 156
---------------	----------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Tuğba Akyel
Instructors	Tuğba Akyel
Assistants	Esra Başar
Goals	The aim of this course is to provide students with an understanding of differentiation and integration of multivariable functions and their calculations.
Content	Functions of several variables; limits and continuity, partial derivatives, linear approximations, chain rule, directional derivatives, maximum and minimum values, Lagrange multipliers. Vector functions; space curves, derivatives and integrals, arc length, motion in space, parametric surfaces. Multiple integrals and applications. Vector calculus; vector fields, line integrals, Green's theorem, curl and divergence, surface integrals, Stokes' theorem, the divergence theorem.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Evaluates the arclength of space curves.	1,2,7	1,2,5,7	А
2) Evaluates double and triple integrals.	1,2,4,7	1,2,5,7	А
3) Changes variables in double and triple integrals.	1,2,4,7	1,2,5,7	А
4) Evaluates line integrals and surface integrals.	1,2,4,7	1,2,5,7	А
5) Expresses the concepts of circulation, work and flux using line and surface integrals.	1,2,3,4,7	1,2,5,7	А
6) Uses Green's, Stokes' and the divergence theorems.	1,2,3,4,7	1,2,5,7	А

Teaching Methods: 1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstormin	
Assessment Methods:	A: Exam

	COURSE CONTENT			
Week	Topics	Study Materials		
1	Functions of Several Variables, Limits, Continuity,	Textbook		

2	Partial Derivatives and Higher Order Derivatives	Textbook
3	Chain Rule, Gradient, Directional Derivatives, Extreme Values, Lagrange Multipliers	Textbook
4	Vector-Valued Functions : Arc Length, Vector Fields, Divergence and Curl	Textbook
5	Double and Triple Integrals : The Double Integral Over a Rectangle, The Double Integral Over More General Regions	Textbook
6	Changing the Order of Integration, The Triple Integral	Textbook
7	The Change of Variables Formula and Applications of Integration: The Geometry of Maps from R ² to R ² , The Change of Variables Theorem	Textbook
8	Applications of Double and Triple Integrals, Improper Integrals	Textbook
9	Integrals: The Path Integral, Line Integrals	Textbook
10	Parametrized Surfaces, Area of a Surface	Textbook
11	Integrals of Scalar Functions Over Surfaces, Surface Integrals of Vector Functions	Textbook
12	The Integral Theorems of Vector Analysis: Green's Theorem	Textbook
13	Stokes' Theorem, Conservative Fields,	Textbook
14	Gauss' Theorem	Textbook

RECOMMENDED SOURCES			
Textbook"Vector Calculus", 6th Edition, by J. Marsden and A. Tromba			
Additional Resources			

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	2 midterm, 1 final	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	2	40	
Quizzes	-		
Assignments	-		
Final	1	60	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40	

 Total
 100

 COURSE CATEGORY
 Core Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes C		Con	ontribution		
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					X
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			x		
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies	x				
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	5	70
Hours for off-the-classroom study (Pre-study, practice)	14	5	70
Mid-terms (Including self study)	2	10	20
Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	15	15
Total Work Load			175
Total Work Load / 25 (h)			7
ECTS Credit of the Course			7

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
INTRODUCTION TO GROUP THEORY	MATH 321	1	2+2	3	6

Prerequisites MATH 102	
------------------------	--

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Meltem Özgül
Instructors	Meltem Özgül
Assistants	-
Goals	To teach as much about groups as one can in a first course to constitute a firm foundation for more specialized work and to provide valuable experience for any further axiomatic study of mathematics.
Content	Binary operations, groups, subgroups, cyclic groups and generators. Permutation groups. Orbits, cycles and alternating groups. Cosets and Lagrange theorem. Direct products. Finitely generated Abelian groups. Isomorphism theorems. Cayley's theorem. Factor groups, simple groups, series of groups, group action. Sylow theorems and applications. Free groups. Group representations.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Classifies finite abelian groups	1,2,3,4,7,9	1,2,5,7	А
2) Finds the Sylow subgroups of a group	1,2,3,4,7,9	1,2,5,7	А
3) Compute factor groups	1,2,4,7,9	1,2,5,7	А
4) Finds group homomorphisms	1,2,4,7	1,2,5,7	А
5) Determines if groups are isomorphic or not	1,2,3,4,7,9	1,2,5,7	А
6) Determines if a group is simple	1,2,3,4,7,9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT		
Week	Topics	Study Materials	
1	Groups, subgroups, cyclic groups Textbook		
2	Permutation groups, orbits, cycles, alternating groups	Textbook	

3	Cosets and the theorem of Lagrange	Textbook
4	Direct product and finitely generarted abelian groups	Textbook
5	Homomorphisms, factor groups	Textbook
6	Simple groups	Textbook
7	Group action on a set	Textbook
8	Isomorphism theorems	Textbook
9	Series of groups	Textbook
10	Sylow theorems	Textbook
11	Applications of the Sylow theory	Textbook
12	Free abelian groups	Textbook
13	Free groups	Textbook
14	Groups presentations	Textbook

RECOMMENDED SOURCES		
Textbook	A First Course in Abstract Algebra, J. Fraleigh.	
Additional Resources		

MATERIAL SHARING				
Documents	Yulearn			
Assignments	-			
Exams	1 midterm, 1 final			

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	60			
Quizzes	-	-			
Assignments	-	-			
Final	1	40			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

COURSE CATEGORY	Expertise/Field Courses
-----------------	-------------------------

	COURSE'S CONTRIBUTION TO PROGRAM						
No			Contribution				
NO	Program Learning Outcomes	1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			х			
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x	
3 Ability form and interpret the relations between research topics in mathematics						x	
4	Ability to define, formulate and solve mathematical problems					x	
5	Consciousness of professional ethics and responsibility					x	
6	Ability to communicate actively		x				
7	Ability of self-development in fields of interest					x	
8	Ability to learn, choose and use necessary information technologies			x			
9	Lifelong education					x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	4	56	
Hours for off-the-classroom study (Pre-study, practice)	14	4	56	
Mid-terms (Including self study)	1	15	15	
Quizzes	-	-	-	
Assignments	-	-	-	
Final examination (Including self study)	1	20	20	
Total Work Load			147	
Total Work Load / 25 (h)			5.88	
ECTS Credit of the Course			6	

COURSE INFORMATION							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
ABSTRACT ALGEBRA	MATH 322	2	2+2	3	6		

Prerequisites	MATH 102 and MATH 231

Language of Instruction	English	
Course Level	Bachelor's Degree (First Cycle Programmes)	
Course Type	Compulsory	
Course Coordinator	Meltem Özgül	
Instructors	Meltem Özgül	
Assistants	-	
Goals	To teach as much about rings and fields as one can in a first course to constitute a firm foundation for more specialized work and to provide valuable experience for any further axiomatic study of mathematics.	
Content	Rings. Integral domains. Fermat's and Euler's theorems. Quotient field of an integral domain. Rings of polynomials. Factorization of polynomials over a field. Noncommutative rings. Ring homomorphisms and factor rings. Prime and maximal ideals. Unique factorization domains. Field extensions. Algebraic extensions. Geometric constructions. Finite fields.	

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Applies Fermat's and Euler's theorems	1,2,4	1,2,5,7	А
2) Find maximal and prime ideals in a ring	1,2,4,7	1,2,5,7	А
3) Constructs the field of quotients of an integral domain	1,2,4,7	1,2,5,7	А
4) Factorizes polynomials over rings	1,2,3,4,7,9	1,2,5,7	А
5) Finds ring homomorphisms	1,2,4,7	1,2,5,7	А
6) Determines algebraic and transcendental elements over a field	1,2,4,7,9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT		
Week	Week Topics Study Material		
1	Rings and fields	Textbook	

2	Integral domains	Textbook
3	Fermat's and Euler's theorems	Textbook
4	The field of quotients of an integral domain	Textbook
5	Rings of polynomials	Textbook
6	Factorization of polynomials over a field	Textbook
7	Noncommutative examples	Textbook
8	Ordered rings and fields	Textbook
9	Homomorphisms and factor rings	Textbook
10	Prime and maximal ideals	Textbook
11	Introduction to Extension fields	Textbook
12	Algebraic extensions	Textbook
13	Geometric constructions	Textbook
14	Finite fields	Textbook

RECOMMENDED SOURCES		
Textbook A First Course in Abstract Algebra, J. Fraleigh.		
Additional Resources		

	MATERIAL SHARING		
Documents	Yulearn		
Assignments	-		
Exams	2 midterm, 1 final		

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	2	60	
Quizzes	-		
Assignments	-		
Final	1	40	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60	
Total		100	

Г

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes		Con	tribu	ition	l
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			х		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility					x
6	Ability to communicate actively		x			
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies			х		
9	Lifelong education					x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	4	56
Hours for off-the-classroom study (Pre-study, practice)	14	4	56
Mid-terms (Including self study)	2	15	30
Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	16	16
Total Work Load			158
Total Work Load / 25 (h)			6.32
ECTS Credit of the Course			6

	COURSE INFOR	MATION			
Course Title	Code	Semester	L+P Hour	Credits	ECTS
ELEMENTARY NUMBER THEORY	MATH 325	1	2+2	3	6

Prerequisites

-

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Mehmet Akif Erdal
Instructors	Mehmet Akif Erdal
Assistants	-
Goals	To introduce the fundamental topics in elementary number theory.
Content	Integers, divisibility, prime numbers, congruences, Chinese remainder theorem, arithmetic functions, quadratic reciprocity law, quadratic fields, Pell's equation, further topics including equations over finite fields, zeta functions and Weil conjectures.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Knows the basic properties of divisibility, prime numbers and the fundamental theorem of arithmetic.	2,4	1,2,5,7	А
2) Using Euclidean algorithm, computes the greatest common divisior of integers and the least common multiple of integers.	2,4,7	1,2,5,7	А
3) Solves congruence equations including systems of congruence equations by applying Chinese remainder theorem.	1,2,4,7,9	1,2,5,7	А
4) Knows the basic properties of Euler's Phi-function, and arithmetic functions, applies Mobius inversion formula.	1,2,3,4,7,9	1,2,5,7	А
5) Applies Gauss' quadratic reciprocity law.	1,2,3,4,7,9	1,2,5,7	А
6) Knows the elementary theory of equations over finite fields and the statements of Weil conjectures.	1,2,3,4,7,9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT	
Week	Topics	Study Materials
1	Divisibility, the greatest common divisor and the least common multiple, primes,	

	unique factorization and the fundamental theorem of arithmetic.
2	Congruences, Fermat's Little Theorem, Euler's Formula.
3	Euler's Phi Function and the Chinese Remainder Theorem.
4	Counting Primes. Euler's Phi Function and Sums of Divisors.
5	Arithmetical Functions, Mobius inversion formula.
6	The structure of the unit group of Z _n .
7	Gauss' Quadratic Reciprocity.
8	Arithmetic of quadratic number fields
9	Pell's equation
10	Quadratic Gauss sums
11	Finite fields.
12	Gauss and Jacobi sums
13	Equations over finite fields.
14	The zeta function and Weil conjectures.
line -	

RECOMMENDED SOURCES			
TextbookElementary Number Theory, David M. Burton, Allyn and Bacon, 1980.			
Additional Resources	A Classical Introduction to Modern Number Theory, K. Ireland, M. Rosen, Graduate Texts in Math., Springer-Verlag.		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	1 midterm, 1 final	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	40	
Quizzes	-		
Assignments	-		
Final	1	60	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40	

 Total
 100

 COURSE CATEGORY
 Expertise/ Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			х		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					х
4	Ability to define, formulate and solve mathematical problems					х
5	Consciousness of professional ethics and responsibility					х
6	Ability to communicate actively			х		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies		x			
9	Lifelong education					х

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	4	56
Hours for off-the-classroom study (Pre-study, practice)	14	4	56
Mid-terms (Including self study)	1	15	15
Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	20	20
Total Work Load			147
Total Work Load / 25 (h)			5,88
ECTS Credit of the Course			6

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
PARTIAL DIFFERENTIAL EQUATIONS	MATH 343	2	2+2	3	6

Prerequisites	MATH 245
---------------	----------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type Compulsory	
Course Coordinator Mustafa Polat	
Instructors Mustafa Polat	
Assistants	-
Goals	To give the students the formation of Partial Differential Equations, classifications and their solutions at the beginning level.
Content	First order equations; linear, quasilinear and nonlinear equations. Classification of second order linear partial differential equations, canonical forms, Cauchy problem. The Cauchy problem for the wave equation. Dirichlet and Neumann problems for the Laplace equation, maximum principle. Heat equation on the strip.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Understands the derivation of PDE and modelling	1,2,4,5	1,2,5,7	А
2) Knows the nonlinear equations, their properties and the solution techniques	2, 3, 8	1,2,5,7	А
3) Has a general information on higher order equations and on Cauchy problem	3, 4, 6	1,2,5,7	А
4) Knows the properties of wave equation and the solution techniques of initial value problems	3, 4, 9	1,2,5,7	А
5) Knows the properties of Laplace equation and the solution techniques of boundary value problems	3, 4, 7, 9	1,2,5,7	А
6) Knows the properties of heat equation and the solution techniques of initial value problems	3, 4, 7, 9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

COURSE CONTENT		
Week	Topics	Study Materials

1	Introduction, First-order DE,	Relevant topics in the text book
2	Introduction, First-order DE,	Relevant topics in the text book
3	First-order nonlinear DE, Compatible systems Charpit's method	Relevant topics in the text book
4	First-order nonlinear DE, Compatible systems Charpit's method	Relevant topics in the text book
5	Linear second-order equations; constant coefficient and factorable operators, particular solutions.	Relevant topics in the text book
6	Linear second-order equations; constant coefficient and factorable operators, particular solutions.	Relevant topics in the text book
7	Normal forms; hyperbolic, parabolic, elliptic cases; Cauchy problem.	Relevant topics in the text book
8	Normal forms; hyperbolic, parabolic, elliptic cases; Cauchy problem.	Relevant topics in the text book
9	Elliptic equations	Relevant topics in the text book
10	Elliptic equations	Relevant topics in the text book
11	Hyperbolic equations	Relevant topics in the text book
12	Hyperbolic equations	Relevant topics in the text book
13	Parabolic equations	Relevant topics in the text book
14	Parabolic equations	Relevant topics in the text book

RECOMMENDED SOURCES			
Textbook	 An introduction to PDE and BVP, by Rene Dennemeyer, McGraw Hill. Elements of PDE, by Ian Sneddon, McGraw Hill. 		
Additional Resources			

MATERIAL SHARING				
Documents	Yulearn			
Assignments	-			
Exams	2 midterm, 1 final			

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	60		
Quizzes	-	-		
Assignments	-	-		
Final	1	40		
Total		100		

CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60
Total		100

COURSE CATEGORY

E

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes Contribution		ition			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)	х				
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics				x	
4	Ability to define, formulate and solve mathematical problems				x	
5	Consciousness of professional ethics and responsibility				x	
6	Ability to communicate actively	x				
7	Ability of self-development in fields of interest				x	
8	Ability to learn, choose and use necessary information technologies	x				
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	4	56	
Hours for off-the-classroom study (Pre-study, practice)	14	4	56	
Mid-terms (Including self study)	2	9	18	
Quizzes	-	-	-	
Assignments	-	-	-	
Final examination (Including self study)	1	20	20	
Total Work Load			150	
Total Work Load / 25 (h)			6	
ECTS Credit of the Course			6	

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
COMPLEX CALCULUS	MATH 357	1	3 + 2	4	7	

Prerequisites	MATH 156
---------------	----------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Tuğba Akyel
Instructors	Tuğba Akyel
Assistants	Kaan Emir Uçar
Goals	Getting know about complex numbers, complex variable functions, complex sequences and series, being able to do calculations with them. Information about contour integral and residue and getting know how to evaluate some integral with such techniques.
Content	Algebra of complex numbers. Sequences and series with complex terms. Power series and convergence radius. Some elementary functions and mappings. Riemann surfaces. Regular functions and Cauchy - Riemann equations. Harmonic functions. Contour integrals and Cauchy theorem. Cauchy's integral formula and some of its direct results. Residue concept. Taylor and Laurent expansions.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Can do calculations with functions of complex variables and sequences of complex numbers.	1,2	1,2,5,7	А
2) Can use Cauchy Riemann equations	1,2,4	1,2,5,7	А
3) Knows the concepts of analytic functions and harmonic functions	1,2,4	1,2,5,7	А
4) Knows how to evaluate contour integrals and knows Cauchy Integral Theorem.	1,2,3,4,7,9	1,2,5,7	А
5) Can evaluate integrals using residues.	2,3,4,7,9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Introduction, Definitions and importance of the subject, Complex numbers and complex plane. Algebraic operations	Course Book 1.1, 1.2,1.3			

2	Complex Exponential, powers, roots	1.4,1.5,1.6
3	Functions, Limit and continuity, analyticity	2.1,2.2,2.3
4	Derivative, Cauchy Riemann equations, harmonic functions	2.4,2.5
5	Elementary Functions and Inverses	3.1,3.2,3.3
6	Sequences, Series.	5.1,5.2,5.3
7	Introduction to complex Integration, contours	4.1,4.2
8	Cauchy theorem, Cauchy`s formula and its consequences	4.3,4.4,4.5
9	Midterm	
10	Integral Theorems, Laurent Series	4.5,5.5
11	Singularities, Residue Theorem	5.6,5.7,6.1
12	Residue theorem	6.1
13	Trigonometric Integrals	6.2
14	Improper Integrals	6.3,6.4

RECOMMENDED SOURCES		
Textbook	Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics (3rd Edition), E. Saff, A. Snider, Pearson Education, 2003.	
Additional Resources	Complex variables and applications, R.V. Churchill and J.W. Brown, McGraw-Hill, 1996 Complex analysis, J. Back and D.J. Newman, Springer-Verlag, 1991	

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	1 midterm, 1 final	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	40	
Quizzes	-	-	
Assignments	-	-	
Final	1	60	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40	

 Total
 100

 COURSE CATEGORY
 Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	No Program Learning Outcomes			Contribution			
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					Х	
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					Х	
3	Ability form and interpret the relations between research topics in mathematics			Х			
4	Ability to define, formulate and solve mathematical problems				Х		
5	Consciousness of professional ethics and responsibility			Х			
6	Ability to communicate actively		Х				
7	Ability of self-development in fields of interest			Х			
8	Ability to learn, choose and use necessary information technologies	Х					
9	Lifelong education		Х				

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	5	70	
Hours for off-the-classroom study (Pre-study, practice)	14	6	84	
Mid-terms (Including self study)	1	10	10	
Quizzes	-	-	-	
Assignments	-	-	-	
Final examination (Including self study)	1	11	11	
Total Work Load			175	
Total Work Load / 25 (h)			7	
ECTS Credit of the Course			7	

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
MATHEMATICAL PROBABILITY	MATH 362	5	2+2	3	6

Prerequisites -

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Gülce Cüran
Instructors	Gülce Cüran
Assistants	-
Goals	To prepare students for a career in actuarial science, graduate studies in financial engineering/mathematics and high school teachers to teach probability and statistics in high schools.
Content	Counting. Elements of probability theory. Random variables. Conditional probability. Bayes' rule. Probability distributions and densities. Uniform, Bernoulli, Binomial, Geometric, Hypergeometric, Poisson and Gaussian (normal) distributions. Uniform density. Expectations and moments.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Apply the counting principles	2,3,4	1,2,5,7	А
2) Compute probabilities	1,2,3,4	1,2,5,7	А
3) Know and apply Bayes' rule	2,3,4	1,2,5,7	А
4) Know discrete probability functions	1,2,3,4	1,2,5,7	А
5) Know continuous probability functions	2,3,4	1,2,5,7	А
6) Know and apply normal distribution	1,2,3,4	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Random Experiments, Sample Spaces, Events Counting Sample Points, Probability of an Event				
2	Counting Principles, Permutations and Combinations				
3	Conditional Probability and the Independence of Events. The Law of Total				

	Probability and Bayes' Rule	
4	Definition of Discrete Random variable. The Probability Distribution of a Discrete Random Variable. Expected value and Variance of a Random Variable	
5	The Binomial, Geometric, Negative Binomial and Hypergeometric and Poisson Probability Distributions	
6	The Poisson Probability Distribution. Moments and Moment-Generating Functions for discrete distributions.	
7	Definition of Continuous Random Variable. The Probability Distribution of a Continuous Random Variable. Expected Values for a Continuous random Variable.	
8	The Uniform, Normal and Exponential Probability Functions.	
9	The Gamma, Weibull and Beta Probability Distributions. Moments and Moment- Generating Functions for continuous distributions.	
10	Sampling Distributions Related to the Normal Distribution. The Central Limit Theorem. The Normal Approximations to the Binomial.	
11	Bivariate and Multivariate Probability Distributions. Marginal and Conditional Probability Distributions	
12	Independent Random Variables. The Covariance of Two Random Variables. The Expected Value and Variance of Linear Functions of Random Variables	
13	Finding the Probability Distribution of a Function of Random Variables. Multivariate Transformations	
14	Tchebysheff's Inequality. Weak Law of Large Numbers. Order Statistics.	

RECOMMENDED SOURCES					
Textbook	Mathematical Statistics with Applicatins. Wackerly, Mendenhall, Scheaffer. Brooks/Cole				
Additional Resources					

MATERIAL SHARING				
Documents	Problem sets (Yulearn)			
Assignments	-			
Exams	1 midterm, 1 final			

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	40		
Quizzes	-	-		
Assignments	-	-		
Final	1	60		

Total	100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	60
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	40
Total	100

```
COURSE CATEGORY
```

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes Contribution			on		
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					х
3	Ability form and interpret the relations between research topics in mathematics			x		
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility		x			
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest			x		
8	Ability to learn, choose and use necessary information technologies			x		
9	Lifelong education				x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	4	56
Hours for off-the-classroom study (Pre-study, practice)	14	3	42
Mid-terms (Including self study)	1	14	28
Quizzes	-	-	-
Assignments	-	-	-
Final examination (Including self study)	1	24	24
Total Work Load			150
Total Work Load / 25 (h)			6
ECTS Credit of the Course			6

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
METRIC AND TOPOLOGICAL SPACES	MATH 439	1	2+2	3	7

Prerequisites	MATH 252
_	
Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory

course rype	compaisory
Course Coordinator	Barış Efe
Instructors	Barış Efe
Assistants	-
Goals	To develop the necessary background for modern analysis courses to follow
Content	Basic concepts about topological spaces and metric spaces. Complete metric spaces, Baire's theorem, Contracting mapping theorem and its applications. Compact spaces, Arzela-Ascoli Theorem Seperability, second countability, Urysohn's lemma and the Tietze extension theorem, Connected spaces, Weierstrass approximation theorem

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Learns basic concepts of topological spaces with emphasis on metric spaces	1,2,3,4	1,2,5,7	А
2) Learns Cauchy sequences and completeness	1,2,3,4	1,2,5,7	А
3) Learns the concept of compact space	1,2,3,4	1,2,5,7	А
4) Learns Baier's category	1,2,3,4	1,2,5,7	А
5) Learns Ascoli-Arzela theorem, Weierstrass approximation	1,2,3,4	1,2,5,7	А
6) Acquires the skill of applying these concepts	1,2,3,4	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT		
Week	Topics	Study Materials	
1	Basic concepts about metric spaces and examples		
2	2 Open, closed sets, topology and convergence		
3	Cauchy sequences and complete metric spaces, Baire's theorem		

4	Continuity and uniformly continuity, spaces of continuous functions, Euclidean space	
5	Contracting mapping theorem and its applications	
6	The definition of topological spaces and some examples, elementary concepts, Open bases and open subbases	
7	Compact spaces, Products of spaces,Tychonoff's theorem and locally compact spaces	
8	Compactness for metric spaces	
9	Arzela-Ascoli Theorem	
10	Seperability, second countability	
11	Hausdorff spaces, Completely regular spaces and normal spaces	
12	Urysohn's lemma and the Tietze extension theorem	
13	Connected spaces, The components of a space, Totally disconnected spaces, Locally connected spaces	
14	The Weierstrass approximation theorem, The Stone-Weierstrass theorems	

RECOMMENDED SOURCES			
Textbook	 S. Kumaresan, Topology of Metric Spaces George F. Simmons, Topology and Modern Analysis W A Sutherland, Introduction to Metric and Topological Spaces E T Copson, Metric Spaces 		
Additional Resources			

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	2 midterm, 1 final	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	40		
Quizzes	-	-		
Assignments	-	-		
Final	1	60		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40		

Total	100

	COURSE'S CONTRIBUTION TO PROGRAM					
No Program Learning Outcomes			Contribution			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					X
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			x		
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies	x				
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	4	56	
Hours for off-the-classroom study (Pre-study, practice)	14	5	70	
Mid-terms (Including self study)	2	15	30	
Quizzes	-			
Assignments	-			
Final examination (Including self study)	1	19	175	
Total Work Load			175	
Total Work Load / 25 (h)			7	
ECTS Credit of the Course			7	

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
FUNCTIONAL ANALYSIS	MATH 456	2	2+2	3	9	

Prerequisites	MATH 439

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Mustafa Polat
Instructors	Mustafa Polat
Assistants	-
Goals	Functional analysis is a subject that has many applications. We can count the theory of differential equations and applications in physics among them.
Content	Topological dual. Compact, closed and adjoint operators. Inner product spaces. Orthonormal sets and Fourier series. Linear operators on Hilbert spaces. Resolvent and spectrum of an operator. Spectra of continuous and compact linear operators. Spectral analysis on Hilbert spaces. Derivations of operators.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Learns inner product and Hilbert Spaces	1,2,4,7	1,2,5,7	А
2) Computes the Fourier Coefficients with respect to an orthonormal basis	1,2,4	1,2,5,7	А
3) Learns dual spaces and to utilize of Hahn-Banach theorem	1,2,3,4,7	1,2,5,7	А
4) Learns Riesz Representation Theorem	1,2,3,4,7,9	1,2,5,7	А
5) Learns the spectrum of linear operators	1,2,3,4,7,9	1,2,5,7	А
6) Learns compact operators and how to apply them	1,2,3,4,7,9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming	
Assessment Methods:	A: Exam	

	COURSE CONTENT			
Week	Topics	Study Materials		
1	Inner Product Spaces, Hilbert Spaces ,Orthogonality			
2	Orthonormal Bases in Infinite Dimensions ,Fourier Series			

3	Continuous Linear Transformations	
4	Hahn-Banach Theorem	
5	Dual Spaces	
6	The Second Dual, Reflexive Spaces and Dual Operators	
7	Projections and Complementary Subspaces	
8	Linear Operators on Hilbert Spaces, Riesz Theorem	
9	The Adjoint of an Operator	
10	Normal, Self-adjoint and Unitary Operators	
11	The Spectrum of an Operator	
12	Positive Operators and Projections	
13	Compact Operators	
14	Spectral Theory of Compact Operators	

RECOMMENDED SOURCES		
Textbook	Linear Functional Analysis, Bryan Rynne, M.A. Youngson	
Additional Resources		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	2 midterm, 1 final	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	40		
Quizzes	-	-		
Assignments	-	-		
Final	1	60		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40		
Total		100		

COURSE CATEGORY

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					X
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					X
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			X		
6	Ability to communicate actively			X		
7	Ability of self-development in fields of interest					X
8	Ability to learn, choose and use necessary information technologies	x				
9	Lifelong education			X		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	4	56			
Hours for off-the-classroom study (Pre-study, practice)	14	7	98			
Mid-terms (Including self study)	2	23	46			
Quizzes	-					
Assignments	-					
Final examination (Including self study)	1	25	25			
Total Work Load			225			
Total Work Load / 25 (h)			9			
ECTS Credit of the Course			9			

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
SENIOR PROJECT AND SEMINAR	MATH 491	8	3 + 0	3	7	

Prerequisites

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	All Faculty Members
Instructors	All Faculty Members
Assistants	-
Goals	Student`s learning how to do research in a basic area, investigate a problem. Writing in suitable format, submitting and presenting the study.
Content	Presentation of project in a seminar and project reports written to publication standards.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Learns how to do literature search.	3,6,7,8,9	11, 17, 20	B,C,H
2) Can investigate a problem in an area.	3,4,7	11, 17, 20	B,C,H
3) Can learn new concepts.	2,7	11, 17, 20	B,C,H
4) Can interpret what he/she has learned.	3,7	11, 17, 20	B,C,H
5) Can prepare report.	5,6,8	11, 17, 20	B,C,H
6) Can present the study.	6,8	11, 17, 20	B,C,H

Teaching Methods:	11: Seminar, 17: Text Analysis/ Survey/Questionnaire, 20: Student Activities / Projects
Assessment Methods:	B: Participation/Discussion, C: Oral Exam, H: Project

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Meeting of the student and the instructor, talking about topics and determining options.				
2	Deciding on a subject. General introduction to the subject.				
3	Read, research and study.				

4	Read, research and study.	
5	Read, research and study.	
6	Read, research and study.	
7	Study.	
8	Study.	
9	Discussion about the work and plan for the future.	
10	Study.	
11	Discussion about the results.	
12	Preparation of the report.	
13	Writing the report.	
14	Finish the report and preparation of the presentation.	

RECOMMENDED SOURCES		
Textbook	Advised resources by instructor	
Additional Resources	Advised resources by instructor	

MATERIAL SHARING		
Documents	Yulearn, email	
Assignments	-	
Exams	1 midterm, 1 final oral exam	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	50		
Quizzes	-	-		
Assignments	-	-		
Final	1	50		
Tota	l	100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	50		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	1	50		
Tota	I	100		
	E(Pi			

COURSE CATEGORY	Expertise/Field Courses
-----------------	-------------------------

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					Х
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					Х
3	Ability form and interpret the relations between research topics in mathematics					Х
4	Ability to define, formulate and solve mathematical problems					Х
5	Consciousness of professional ethics and responsibility					Х
6	Ability to communicate actively					Х
7	Ability of self-development in fields of interest					Х
8	Ability to learn, choose and use necessary information technologies					Х
9	Lifelong education					Х

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	5	70
Mid-terms (Including self study)	1	28	28
Assignments	-	-	-
Final examination (Including self study)	1	35	35
Total Work Load			175
Total Work Load / 25 (h)			7
ECTS Credit of the Course			7

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
FOURIER ANALYSIS	MATH 344	1-2	3	3	7	

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	Mustafa Polat
Instructors	Mustafa Polat
Assistants	-
Goals	To teach the basic principles of elementary Fourier analysis.
Content	Functional sequences and series. Convergence. Cauchy-Schwarz inequality. Fourier series and its convergence. Orthogonal polynomials. Fourier series with respect to an orthogonal system. Bessel's inequality. Generalizations with weight. Completeness of orthogonal systems. Parseval's identity. Fourier integrals. Fourier transformations. Applications to boundary value problems,

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Knows how to compute Fourier series of a function.	2,3	1,2,5,7	А
2) Knows the basic terminology and results of inner product spaces, Hilbert spaces, L^2 spaces.	2,3	1,2,5,7	А
3) Knows how to compute Fourier transform of a function.	2,3	1,2,5,7	А
4) Knows some applications of Fourier series and Fourier transform.	2,3,4	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT			
Week	Topics	Study Materials		
1	Fourier Series	Textbook		
2	Fourier Series (continued)	Textbook		
3	Fourier Series (continued)	Textbook		
4	Orthogonal Sets of Functions	Textbook		
5	Orthogonal Sets of Functions (continued)	Textbook		

6	Orthogonal Sets of Functions (continued)	Textbook
7	Orthogonal Polynomials	Textbook
8	Orthogonal Polynomials (continued)	Textbook
9	Orthogonal Polynomials (continued)	Textbook
10	The Fourier Transform	Textbook
11	The Fourier Transform (continued)	Textbook
12	The Fourier Transform (continued)	Textbook
13	Some Boundary Value Problems	Textbook
14	Some Boundary Value Problems (continued)	Textbook

RECOMMENDED SOURCES				
Textbook Fourier Analysis and Its Applications, by G. B. Folland				
Additional Resources	Fourier Series and Boundary Value Problems, by J. W. Brown and R. V. Churchill.			

MATERIAL SHARING					
Documents	Yulearn				
Assignments	-				
Exams	2 midterm, 1 final				

ASSESSMENT				
NUMBER	PERCENTAGE			
2	100			
-	-			
-	-			
1	60			
	100			
	40			
	60			
	100			
	2			

COURSE'S CONTRIBUTION TO PROGRAM				
No	Program Learning Outcomes	Contribution		

		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)	х				
2	Acquiring fundamental knowledge on fundamental research fields in mathematics				x	
3	Ability form and interpret the relations between research topics in mathematics				x	
4	Ability to define, formulate and solve mathematical problems				x	
5	Consciousness of professional ethics and responsibility				x	
6	Ability to communicate actively	x				
7	Ability of self-development in fields of interest				x	
8	Ability to learn, choose and use necessary information technologies	x				
9	Lifelong education			х		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities	Quantity	Duration (Hour)	Total Workload (Hour)				
Course Duration (14x Total course hours)	14	3	42				
Hours for off-the-classroom study (Pre-study, practice)	14	5	70				
Mid-terms (Including self study)	2	14	28				
Assignments	-	-	-				
Final examination (Including self study)	1	35	35				
Total Work Load			175				
Total Work Load / 25 (h)			7				
ECTS Credit of the Course			7				

COURSE INFORMATION							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
MATHEMATICAL MODELLING	MATH348	1-2	3 + 0	3	7		

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Mathematics Elective
Course Coordinator	İlknur Kuşbeyzi Aybar
Instructors	İlknur Kuşbeyzi Aybar
Assistants	-
Goals	Determining suitable mathematical models for problems in some areas. advancing closest solutions to the models and evaluating results
Content	Modeling of systems with one independent, one dependent variable and with several variables, Modelling of systems with difference equations, Applications to some examples; population, finance, epidemic problems. Analytical and numerical solutions of the model equations. Linear, Nonlinear, Periodic Models, Continuous modelling with differential equations, Applications to some problems.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Determines variables and parameters of problem.	1,4	1,2,5,7	A,F
2) Analyzes the problem which is modelled.	2,3,4	1,2,5,7	A,F
3) Associates the solution of the model with the solution of the problem.	2,3,4	1,2,5,7	A,F
4) Writes a discrete model equation of a problem.	1,4	1,2,5,7	A,F
5) Writes a continuous model equation of a problem.	1,4	1,2,5,7	A,F
6) Interests in modelling of some industrial, financial, social, health problems.	2,3,4,6,7,9	1,2,5,7	A,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam, F: Homework/Assignments

COURSE CONTENT			
Week Topics Study Mat		Study Materials	
1	Variables, parameters, setting up modelling materials.		

2	Setting up model with difference equations
3	Examples in finance, population problems
4	Fixed points and stability
5	Systems of difference equations
6	Examples in epidemic problems and some industrial problems
7	Linear, nonlinear, periodic models
8	Midterm, Markov chain
9	Markov Chain, Continous modelling, differential equations
10	Continous modelling, basic models of paticle dynamics
11	Midterm, dimensionless equations
12	Perturbation techniques for nonlinear models
13	Examples in various areas.
14	Examples in various areas

RECOMMENDED SOURCES					
Textbook					
Additional Resources	Principles of Mathematical Modelling, C. Dym. Mathematical Modelling, J. N. Kapur				

MATERIAL SHARING			
Documents	Yulearn		
Assignments	3 assignments		
Exams	2 midterm, 1 final		

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	2	30			
Quizzes	-	-			
Assignments	3	20			
Final	1	50			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50			
Total		100			

Г

	COURSE'S CONTRIBUTION TO PROGRAM						
No	No Program Learning Outcomes			Contribution			
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					Х	
2	Acquiring fundamental knowledge on fundamental research fields in mathematics		х				
3	3 Ability form and interpret the relations between research topics in mathematics		х				
4	Ability to define, formulate and solve mathematical problems					х	
5	Consciousness of professional ethics and responsibility				Х		
6	Ability to communicate actively				Х		
7	Ability of self-development in fields of interest				Х		
8	Ability to learn, choose and use necessary information technologies		х				
9	Lifelong education					Х	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration (14x Total course hours)	14	3	42		
Hours for off-the-classroom study (Pre-study, practice)	14	5	70		
Mid-terms (Including self study)	2	14	28		
Quizzes	-	-	-		
Assignments	3	7	21		
Final examination (Including self study)	1	14	14		
Total Work Load			175		
Total Work Load / 25 (h)			7		
ECTS Credit of the Course			7		

COURSE INFORMATION							
Course Title Code Semester L+P Hour Credits ECT							
REAL ANAYSIS II	MATH 353	1,2	3 + 0	3	7		

Prerequisites	MATH 252

Language of Instruction	English				
Course Level	Bachelor's Degree (First Cycle Programs)				
Course Type	Elective				
Course Coordinator	Mehmet Akif Erdal				
Instructors	Iehmet Akif Erdal				
Assistants	-				
Goals	This course is the continuation of Real Analysis I and together with Real Analysis I they constitute the pillar of many topics in mathematics such as complex analysis, differential equations, differential and integral calculus, and differential geometry. It is impossible to assimilate these areas of mathematics without having this basic knowledge of analysis. The aim of the course is to equip students with this basic knowledge.				
Content	Riemann Integral. Riemann Integrable Functions. The Fundamental Theorem of Calculus. The Darboux Integral. Sequences of functions. Pointwise and Uniform Convergence. Interchange of Limits. The Exponential and Logarithmic Functions. The Trigonometric Functions				

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) A sound understanding of Riemann integral	2,3,4	1,2,5,7	A,F
2) Learn the class of Riemann integrable functions	2,3,4	1,2,5,7	A,F
3) Master the fundamental theorem of calculus	2,3,4	1,2,5,7	A,F
4) Acquire the knowledge of Darboux integral and its equivalence to Riemann integral of functions	2,3,4	1,2,5,7	A,F
5) Learn sequences of functions.	2,3,4	1,2,5,7	A,F
6) Apply these ideas to obtain rigorous definitions most important analytic functions	2,3,4	1,2,5,7	A,F

Teaching Methods: 1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming	
Assessment Methods:	A: Exam, F: Homework Assignments

	COURSE CONTENT						
Week	Week Topics Study Materials						
1	Partitions and Tagged Partitions, Riemann sum, Riemann integrability	Bartle, Sherbert Chapter 7-1					
2	Some Properties of the Integral, Boundedness Theorem	Bartle, Sherbert Chapter 7-1					
3	Riemann Integrable Functions, Cauchy Criterion, Squeeze Theorem	Bartle, Sherbert Chapter 7-2					
4	Classes of Riemann Integrable Functions	Bartle, Sherbert Chapter 7-2					
5	Additivity Theorem	Bartle, Sherbert Chapter 7-2					
6	The Fundamental Theorem of Calculus, Substitution Theorem	Bartle, Sherbert Chapter 7-3					
7	Lebesgue's integrability Criterion, Composition Theorem,	Bartle, Sherbert Chapter 7-3					
8	The Product Theorem, Integration by Parts, Taylor's Theorem with the Remainder	Bartle, Sherbert Chapter 7-3					
9	The Darboux Integral, Upper and Lower Sums, Upper and Lower Integrals,	Bartle, Sherbert Chapter 7-4					
10	Darboux integrable functions Darboux Integrability Criterion, Continuous and Monotone Functions	Bartle, Sherbert Chapter 7-4					
11	Equivalence of Riemann and Darboux integrals, Sequences of Functions, Pointwise and Uniform Convergence	Bartle, Sherbert Chapter 7-4, Chapter 8					
12	Cauchy Criterion for Uniform Convergence	Bartle, Sherbert Chapter 8					
13	The Exponential and Logarithmic Functions	Bartle, Sherbert Chapter 8					
14	The Trigonometric Functions	Bartle, Sherbert Chapter 8					

RECOMMENDED SOURCES						
Textbook	Robert G. Bartle,Donald R. Sherbert, Introduction to Real Anlaysis , Fourth Edition, John Wiley & Sons, Inc.(2011),ISBN-13: 978-0471433316ISBN-10: 9780471433316. <u>https://sciencemathematicseducation.files.wordpress.com/2014/01/0471433314real</u> <u>analysis4.pdf</u>					
Additional Resources	Stephen Abbott, Understanding Analysis, Springer, 2. Edition (2015)					

	MATERIAL SHARING				
Documents	Yulearn				
Assignments	3 assignments				
Exams	1 midterm, 1 final				

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	40			

CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40
Total		100
Final	1	40
Assignments	3	20
Quizzes	-	-

Г

COURSE CATEGORY		Expertise/Fi	leld	Сοι	ırse	es		
	COURSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes		Contribution					
			1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such derivative, integral, logic, linear algebra and discrete mathematics which for the fundamental research fields in mathematics (i.e., analysis, algebra equations and geometry)	n provide a basis					x	
2	Acquiring fundamental knowledge on fundamental research fields in ma	thematics					x	
3	Ability form and interpret the relations between research topics in math	ematics					x	
4	Ability to define, formulate and solve mathematical problems						x	
5	Consciousness of professional ethics and responsibility				x			
6	Ability to communicate actively				x			
7	Ability of self-development in fields of interest					x		
8	Ability to learn, choose and use necessary information technologies		Γ		x			
9	Lifelong education				x			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities	Quantity	Duration (Hour)	Total Workload (Hour)				
Course Duration (14x Total course hours)	14	4	56				
Hours for off-the-classroom study (Pre-study, practice)	14	6	84				
Mid-terms (Including self-study)	1	15	15				
Quizzes	-	-	-				
Assignments	3	1	3				
Final examination (Including self-study)	1	20	20				

Total Work Load	178
Total Work Load / 25 (h)	7,12
ECTS Credit of the Course	7

COURSE INFORMATION								
Course Title	Semester	L+P Hour	Credits	ECTS				
CONVEX ANALYSIS AND OPTIMIZATION	MATH 355	1	3 + 0	3	7			
Proroquisitos					•			

Prerequisites	-
Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programs)
Course Type	Elective
Course Coordinator	İlker Savaş Yüce
Instructors	İlker Savaş Yüce
Assistants	-
Goals	This course is intended to introduce basic concepts of convex analysis and optimization theory. First the convex subsets and its geometric properties are defined. Then convex functions and functions of several variables are studied. Finally, the convex optimization theory is discussed.
Content	Affine subspaces, convex subsets, polyhedra, convex functions, differentiable functions of several variables, convex optimization theory

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods	
1) A sound understanding of convex subsets.	1,4,6	1,2,5,7	A,F	
2) Learn the class of convex functions.	4,7	1,2,5,7	A,F	
3) Learn differentiable functions of several variables.	2,4,7	1,2,5,7	A,F	
4) Acquire knowledge of convex optimization theory.	1,2,4,7	1,2,5,7	A,F	

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming		
Assessment Methods:	A: Exam, F: Homework Assignments		

COURSE CONTENT				
Week	Topics	Study Materials		
1	Fourier-Motzkin Elimination	Ch.1		
2	Affine Subspaces	Ch.2		
3	Convex Subsets	Ch.3		
4	Polyhedra	Ch.4		
5	Computations with polyhedra	Ch.5		

6	Closed convex subsets and separating planes	Ch.6
7	Convex Functions	7.1, 7.2, 7.3, 7.4
8	Convex Functions	7.5, 7.6, 7.7, 7.8
9	Differentiable functions of several variables	8.1, 8.2
10	Differentiable functions of several variables	8.3, 8.4, 8.5
11	Convex functions of several variables	Ch.9
12	Convex optimization	10.1, 10.2, 10.3, 10.4
13	Convex optimization	10.5, 10.6, 10.7
14	Review	

RECOMMENDED SOURCES				
Textbook	Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker, Niels Lauritzen, World Scientific Publishing, Illustrated Edition.			
Additional Resources				

MATERIAL SHARING				
Documents	Yulearn			
Assignments	1 assignment			
Exams	1 midterm, 1 final			

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	25		
Quizzes		-		
Assignments	1	24		
Final	1	51		
Total		49		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		51		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		49		
Total		100		

COURSE CATEGORY	Expertise/Field Courses
-----------------	-------------------------

	COURSE'S CONTRIBUTION TO PROGRAM								
No	No Program Learning Outcomes				Contribution				
		1	2	3	4	5			
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x			
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x			
3	Ability form and interpret the relations between research topics in mathematics					x			
4	Ability to define, formulate and solve mathematical problems					x			
5	Consciousness of professional ethics and responsibility			x					
6	Ability to communicate actively			x					
7	Ability of self-development in fields of interest				x				
8	Ability to learn, choose and use necessary information technologies			x					
9	Lifelong education			x					

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities		Quantity Duration (Hour)				
Course Duration (14x Total course hours)	14	4	56			
Hours for off-the-classroom study (Pre-study, practice)	14	6	84			
Mid-terms (Including self-study)	1	15	15			
Quizzes	-	-	-			
Assignments	1	3	3			
Final examination (Including self-study)	1	20	20			
Total Work Load			178			
Total Work Load / 25 (h)			7,12			
ECTS Credit of the Course			7			

COURSE INFORMATION							
Course Title Code Semester L+P Hour Credits ECTS							
NUMERICAL ANALYSIS	MATH 365	1-2	3 +0	3	7		

Prerequisites -

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	İlknur Kuşbeyzi Aybar
Instructors	İlknur Kuşbeyzi Aybar
Assistants	-
Goals	Getting know and examine different numerical methods for various type of calculations.
Content	Introduction and background. Iterative solution of non-linear equations, bisection method, fixed point iteration, Newton's and the secant method. Polynomial, divided differences and finite differences interpolations. Systems of linear equations, Gaussian elimination, LU decomposition, iterative methods. Numerical differentiation and integration.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) can determine roots of higher order equations numerically.	1,4	1,2,5,7	A,F
2) have a basic knowledge of numerical interpolation and approximation of functions	1,2,4,7	1,2,5,7	A,F
3) have a basic knowledge of numerical integration and differentiation.	1,2,4,7	1,2,5,7	A,F
4) is familiar with numerical solution of ordinary differential equations [1,2,4,7	1,2,5,7	A,F
5) can do error analysis	1,2,4,7	1,2,5,7	A,F

Teaching Methods: 1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorm	
Assessment Methods:	A: Exam, F: Homework Assignments

	COURSE CONTENT			
Week	Topics	Study Materials		
1	Basic definitions, Taylor polynomials,	Textbook: Chapter 1,3		

2	Rootfinding, bisection method	4.1
3	Newton's method, fixed point iteration	4.2, 4.4
4	Polynomial interpolation, Divided differences, Error in polynomial interpolation	5.1,5.2,5.3
5	Approximation problems, error	Chapter 6
6	Numerical integration, the trapezoidal and Simpson rules,	7.1
7	error formulas. Gaussian numerical integration method.	7.2,7.3
8	Numerical differentiation, Differentiation by interpolation,	7.4
9	MIDTERM	
10	An introduction to numerical solutions to differential equations	9.1
11	Euler's method, convergence.	9.2, 9.3
12	Taylor and Runge-Kutta methods	9.4
13	Cont.	9.4
14	review	

RECOMMENDED SOURCES			
Textbook	K. E. Atkinson, W. Han, Elementary Numerical Analysis, 3Ed. John Wiley, 2004.		
Additional Resources			

MATERIAL SHARING			
Documents	Yulearn		
Assignments	4 assignments		
Exams	1 midterm, 1 final		

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	30		
Quizzes	-			
Assignments	4	10		
Final	1	60		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40		

 Total
 100

 COURSE CATEGORY
 Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	Program Learning Outcomes			Contribution			
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					х	
2	Acquiring fundamental knowledge on fundamental research fields in mathematics			Х			
3	Ability form and interpret the relations between research topics in mathematics		х				
4	Ability to define, formulate and solve mathematical problems					Х	
5	Consciousness of professional ethics and responsibility			Х			
6	Ability to communicate actively	х					
7	Ability of self-development in fields of interest					Х	
8	Ability to learn, choose and use necessary information technologies				Х		
9	Lifelong education				Х		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	5	70	
Mid-terms (Including self study)	1	14	14	
Quizzes	-	-	-	
Assignments	4	7	28	
Final examination (Including self study)	1	21	21	
Total Work Load			175	
Total Work Load / 25 (h)			7	
ECTS Credit of the Course			7	

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
GEOMETRIES	MATH 411	1-2	3 + 0	3	7	

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	İlker Savaş Yüce
Instructors	İlker Savaş Yüce
Assistants	-
Goals	To provide information about the fundamental concepts of geometries defined by invariants of transformations on two dimensional spaces of constant curvature.
Content	Plane Euclidean geometry, Affine transformations in the Euclidean plane, Finite groups of isometries of Euclidean plane, Geometry on sphere, The projective plane, The hyperbolic plane.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Learns the geometry on plane	1,2,3,4,7	1,2,5,7	А
2) Learns the geometry on sphere	1,2,3,4,7	1,2,5,7	А
3) Learns the geometry on hyperbolic plane	1,2,3,4,7	1,2,5,7	А
4) Learns the transformations on plane	1,2,3,4,7,9	1,2,5,7	А
5) Learns the transformations on sphere	1,2,3,4,7,9	1,2,5,7	А
6) Learns the transformations on hyperbolic plane	1,2,3,4,7,9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT				
Week Topics		Study Materials			
1	Plane Euclidean Geometry	From textbook Chapter 1			
2	Plane Euclidean Geometry	Chapter 1			
3	Plane Euclidean Geometry	Chapter 1			
4	Affine transformations in Euclidean Plane	Chapter 2			

5	Affine transformations in Euclidean Plane	Chapter 2
6	Finite Group of Isometries of Euclidean Plane	Chapter 3
7	MIDTERM and discussion of solutions	
8	Geometry on Sphere	Chapter 4
9	Geometry on Sphere	Chapter 4
10	Geometry on Sphere	Chapter 4
11	The Projective plane	Chapter 5
12	Distance geometry on Projective Plane	Chapter 6
13	The Hyperbolic Plane	Chapter 7
14	The Hyperbolic Plane	Chapter 7

RECOMMENDED SOURCES					
Textbook P. J. Ryan, Euclidean and Non-Euclidean Geometry An analytic Approach, Cambridge 1997					
Additional Resources					

MATERIAL SHARING			
Documents	Yulearn		
Assignments	-		
Exams	1 midterm, 1 final		

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	60			
Quizzes	-	-			
Assignments	-	-			
Final	1	40			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

COURSE CATEGORY

Expertise/ Field Courses

COURSE'S CONTRIBUTION TO PROGRAM

No	No Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			х		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			х		
6	Ability to communicate actively			х		
7	Ability of self-development in fields of interest				х	
8	Ability to learn, choose and use necessary information technologies			х		
9	Lifelong education					x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration (14x Total course hours)	14	3	42		
Hours for off-the-classroom study (Pre-study, practice)		5	70		
Mid-terms (Including self study)	1	24	24		
Final examination (Including self study)	1	36	36		
Total Work Load			172		
Total Work Load / 25 (h)			6.88		
ECTS Credit of the Course			7		

COURSE INFORMATION						
Course Title Code Semester L+P Hour Credits ECTS						
CLASSICAL LIE GROUPS AND LIE ALGEBRAS	MATH 413	1-2	3 + 0	3	7	

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	Mehmet Akif Erdal
Instructors	Mehmet Akif Erdal
Assistants	-
Goals	To introduce the basics of the theory of Lie groups and Lie algebras within the framework of matrix groups.
Content	General linear groups, Matrix groups, example : orthogonal groups, Tangent space and the dimension of matrix groups, smooth homomorphisms, Exponential and the logarithm of a matrix, Center, Maximal tori, Clifford algebras, Normalizers, Weyl groups, Reflections and roots.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Applies linear algebraic methods	1,2,5	1,2,5,7	A,F
2) Knows the basic properties and examples of matrix groups	1,2,3,4,7,9	1,2,5,7	A,F
3) Determines the tangent space to a matrix group	1,2,5	1,2,5,7	A,F
4) Computes the exponential and the logarithm of matrices	1,2,3,5	1,2,5,7	A,F
5) Knows the definition and basic properties of a maximal torus in a matrix group	1,2,3,5,7,9	1,2,5,7	A,F
6) Knows the definition and very basic properties of general Lie groups and Lie algebras	1,2,3,5,7,9	1,2,5,7	A,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam, F: Homework Assignments

	COURSE CONTENT		
Week	Topics	Study Materials	
1	General linear groups	Textbook	
2	Orthogonal groups	Textbook	

3	Homomorphisms	Textbook
4	Exponential of a matrix, logarithm of a matrix	Textbook
5	Lie algebras	Textbook
6	Manifolds	Textbook
7	Maximal tori	Textbook
8	Covering by maximal tori	Textbook
9	Conjugacy of maximal tori	Textbook
10	Simply connected groups	Textbook
11	Spin(k)	Textbook
12	Normalizers, Weyl groups	Textbook
13	Lie groups	Textbook
14	Reflections, roots	Textbook

RECOMMENDED SOURCES		
TextbookMatrix Groups, M. Curtis, 2nd. Ed., Springer-Verlag, 1984.		
Additional Resources		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	5 homework assignments	
Exams	1 midterm, 1 final	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	40	
Quizzes	-	-	
Assignments	5	20	
Final	1	40	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60	
Total		100	

COURSE CATEGORY	Expertise/ Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			х		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility					x
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies		x			
9	Lifelong education					x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	4	56
Mid-terms (Including self study)	1	20	20
Assignments	5	7	35
Final examination (Including self study)	1	20	20
Total Work Load			173
Total Work Load / 25 (h)			6.92
ECTS Credit of the Course			7

COUR	SE INFORMAT	ION			
Course Title	Code	Semester	L+P Hour	Credits	ECTS
READINGS IN GEOMETRY	MATH 416	1-2	3	3	7

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	İlker Savaş Yüce
Instructors	İlker Savaş Yüce
Assistants	-
Goals	To teach selected topics in geometry preferably involving parts of advanced books or research articles
Content	Selected topics in geometry

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Solves problems in geometry	1,2,3	1,2,5,7	A,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods: A: Exam, F: Homework Assignments	

COURSE CONTENT				
Week	Topics	Study Materials		
1	Problems in geometry			
2	Problems in geometry			
3	Problems in geometry			
4	Problems in geometry			
5	Problems in geometry			
6	Problems in geometry			
7	Problems in geometry			
8	Problems in geometry			
9	Problems in geometry			
10	Problems in geometry			
11	Problems in geometry			

12	Problems in geometry	
13	Problems in geometry	
14	Problems in geometry	

RECOMMENDED SOURCES					
Textbook					
Additional Resources					

MATERIAL SHARING						
Documents	Yulearn					
Assignments	-					
Exams	1 midterm, 1 final					

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	40			
Quizzes	-	-			
Assignments	-	-			
Final	1	60			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	60			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	1	40			
Total		100			

	COURSE'S CONTRIBUTION TO PROGRAM							
No	No Program Learning Outcomes			Contribution				
		1	2	3	4	5		
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)	x						
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x		
3	Ability form and interpret the relations between research topics in mathematics					x		
4	Ability to define, formulate and solve mathematical problems				x			

5	Consciousness of professional ethics and responsibility			x	
6	Ability to communicate actively			x	
7	Ability of self-development in fields of interest				x
8	Ability to learn, choose and use necessary information technologies	x			
9	Lifelong education				x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	3	42			
Hours for off-the-classroom study (Pre-study, practice)	14	7	70			
Mid-terms (Including self study)	1	30	30			
Quizzes	-	-	-			
Assignments	-	-	-			
Final examination (Including self study)	1	30	30			
Total Work Load			172			
Total Work Load / 25 (h)			6,88			
ECTS Credit of the Course			7			

COURSE INFORMATION							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
GALOIS THEORY	MATH 422	1-2	3 + 0	3	7		

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	Meltem Özgül
Instructors	Meltem Özgül
Assistants	-
Goals	To introduce the basic facts about field extensions, Galois theory and its applications.
Content	Algebraic extensions, Algebraic Closure, Splitting Fields, Normal Extensions, Separable Extensions, Finite Fields, Fundamental Theorem of Galois Theory, Cyclic Extensions, Solvability by Radicals, Solvability of Algebraic Equations, Construction with Ruler and Compass.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Applies irreducibility criterions to decide if a given polynomial is irreducible or not. Computes the minimal polynomial of a given element algebraic over a base field.	1,2,4,7	1,2,5,7	A,F
2) Computes the splitting field of a given polynomial	1,2,4	1,2,5,7	A,F
3) Decides if a given polynomial is separable or not.	1,2,4	1,2,5,7	A,F
4) Decides if a given extension is Galois or not. Compute the Galois group of a given Galois extension.	1,2,3,4,7,9	1,2,5,7	A,F
5) Applies Fundamental Theorem of Galois Theory in concrete examples	1,2,3,4,7,9	1,2,5,7	A,F
6) Analyses particular polynomials – computes their Galois groups and assesses their solvability by radicals.	1,2,3,4,7,9	1,2,5,7	A,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam, F: Homework Assignments

	COURSE CONTENT		
Week	Week Topics Study Materia		
1	Rings and homomorphisms	Textbook	

	Ideals and quotient rings	
2	Polynomial rings Vector spaces	Textbook
3	Algebraic extensions	Textbook
4	Algebraic extensions continued	Textbook
5	Algebraic Closure	Textbook
6	Splitting Fields, Normal Extensions	Textbook
7	Separable Extensions	Textbook
8	Finite Fields	Textbook
9	Fundamental Theorem of Galois Theory	Textbook
10	Fundamental Theorem of Galois Theory continued	Textbook
11	Cyclic Extensions	Textbook
12	Solvability by Radicals	Textbook
13	Solvability of Algebraic Equations	Textbook
14	Construction with Ruler and Compass	Textbook

RECOMMENDED SOURCES			
Textbook A First Course in Abstract Algebra, Fraleigh			
Additional Resources	Abstract Algebra, Dummit-Foote		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	-	
Exams	1 midterm, 1 final	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	50		
Quizzes	-	-		
Assignments	-	-		
Final	1	50		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50		

 Total
 100

 COURSE CATEGORY
 Expertise/ Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes	Contribution				
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			x		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility					x
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies		x			
9	Lifelong education					х

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	7	70	
Mid-terms (Including self study)	1	30	30	
Quizzes	-	-	-	
Assignments	-	-	-	
Final examination (Including self study)	1	30	30	
Total Work Load			172	
Total Work Load / 25 (h)			6,88	
ECTS Credit of the Course			7	

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
INTRODUCTION TO REPRESENTATION THEORY	MATH 423	1,2	3+0	3	7

Prerequisites	MATH 321 AND MATH 322
---------------	-----------------------

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	İlker Savaş Yüce
Instructors	İlker Savaş Yüce
Assistants	-
Goals	To introduce basic facts about representation theory of groups and to find a representation of a group as a group of matrices in order to have a concrete description of this group.
Content	Generalities and basic definitions. Sums, quotients, tensor products, characters and decompositions of representations. Group algebra. Generalities on algebras and modules, semi-simple modules. Invertible and nilpotent elements. Idempotents. The Jacobson radical. Semi-simple and local algebras. Projective modules. Primitive decompositions and points. Blocks of an algebra. Duality. Symmetric algebras.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Visualizes groups as matrices	1,2,4	1,2,5,7	А
2) Uses group algebra to construct the regular representation of a group	1,2,4,7	1,2,5,7	А
3) Uses FG-modules to obtain information about representations of a group G over a field F	1,2,4,7	1,2,5,7	А
4) Computes the character table of a group	1,2,3,4,7,9	1,2,5,7	А
5) Applies tensor products to find all the irreducible characters of a direct product of groups	1,2,3,4,7,9	1,2,5,7	А
6) Uses blocks of an algebra to get information about its modules	1,2,3,4,7,9	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

COURSE CONTENT		
Week	Topics	Study Materials

1	Generalities and basic definitions	Textbook
2	Sums, quotients, tensor products, characters	Textbook
3	Decompositions of representations	Textbook
4	Group algebra	Textbook
5	Generalities on algebras and modules, semi-simple modules	Textbook
6	Invertible and nilpotent elements	Textbook
7	7 Idempotents Textbook	
8	8 The Jacobson radical Textbook	
9	9 Semi-simple and local algebras Textbook	
10	10 Projective modules Textbook	
11	Primitive decompositions and points	Textbook
12	12 Blocks of an algebra Textbook	
13	Duality Textbook	
14	Symmetric algebras	Textbook

RECOMMENDED SOURCES		
Textbook Representations and characters of groups. Gordon James, Martin Liebeck.		
Additional Resources Representations of finite groups and associative algebras. C.W. Curtis, I. Reiner		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	Assignments -	
Exams	Exams 2 midterms, 1 final	

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	2	60
Quizzes	-	-
Assignments	-	-
Final	1	40
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60

 Total
 100

 COURSE CATEGORY
 Expertise/ Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes Contrib		tribu	ution		
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)			х		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					х
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					Х
5	Consciousness of professional ethics and responsibility					x
6	Ability to communicate actively		x			
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies			x		
9	Lifelong education					х

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities		Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	6	84	
Mid-terms (Including self study)	2	15	30	
Quizzes	-	-	-	
Assignments	-	-	-	
Final examination (Including self study)	1	20	20	
Total Work Load			176	
Total Work Load / 25 (h)			7.04	
ECTS Credit of the Course			7	

СО	URSE INFORM	IATION			
Course Title	Code	Semester	L+P Hour	Credits	ECTS
CATEGORY THEORY IN COMPUTATION	MATH 424	1	3 + 0	3	7

Prerequisites	MATH 101 and MATH 321		
	·		
Language of Instruction	English		
Course Level	Bachelor's Degree (First Cycle Programs)		
Course Type	Elective		
Course Coordinator	Mehmet Akif Erdal		
Instructors	Mehmet Akif Erdal		
Assistants	-		
Goals	This course aims to equip students with knowledge of fundamentals of category theory and applications in computing sciences.		
Content	Some preliminaries for categories, Sets, functions. Definitions of categories, functors, natural transformations. Functional programming languages as categories. Category of sets. Categories of sets with extra structure. Yoneda Lemma. Universal properties. Initial and Terminal objects. Adjoint functors. Monads/Lawvere theories. Finitary algebraic theories. Universal Algebra and Programming Languages.		

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Knows categories, functors and natural transformations.	1,2,4	1,2,5,7	A,F
2) Knows Yoneda lemma and its consequences.	1,2,4,7	1,2,5,7	A,F
3) Knows universal algebra through monads and Lawvere theories	1,2,4,7	1,2,5,7	A,F
4) Understands the link between universal algebra and programming	1,2,3,4,7,9	1,2,5,7	A,F
5) Master categorical constructions.	1,2,3,4,7,9	1,2,5,7	A,F

Teaching Methods: 1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainston	
Assessment Methods:	A: Exam, F: Homework Assignments

	COURSE CONTENT		
Week	Topics	Study Materials	
1	Preliminaries		
2	Categories, functors and natural transformations		
3	Mathematical structures and functional programming languages as categories		

4	Categories of sets	
5	Categories of sets with extra structures	
6	Representable functors and Yoneda lemma.	
7	Universal properties: Initial and terminal objects	
8	Categorical products, coproducts	
9	Categorical limits and colimits	
10	Adjoint functors	
11	Lawvere theories/Monads: Definitions and Examples	
12	Universal algebra via Lawvere theories/Monads	
13	Lawvere theories/Monads in Computer Science	
14	Universal algebra and programming	

RECOMMENDED SOURCES				
TextbookBarr, Michael, and Charles Wells. Category theory for computing science. Vol. 49. New York: Prentice Hall, 1990. http://www.tac.mta.ca/tac/reprints/articles/22/tr22.pdf				
Additional Resources	Mac Lane, Saunders. <i>Categories for the working mathematician</i> . Vol. 5. Springer Science & Business Media, 2013. Leinster, Tom. <i>Basic category theory</i> . Vol. 143. Cambridge University Press, 2014. Milewski, Bartosz. <i>Category theory for programmers</i> . Blurb, 2018.			

	MATERIAL SHARING		
Documents	Yulearn		
Assignments	3 assignments		
Exams	2 midterm, 1 final		

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	2	40
Quizzes	-	-
Assignments	3	20
Final	1	40
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60
Total		100

Г

	COURSE'S CONTRIBUTION TO PROGRAM						
No	Program Learning Outcomes Contribution			on			
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)				х		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x	
3	Ability form and interpret the relations between research topics in mathematics					x	
4	Ability to define, formulate and solve mathematical problems					x	
5	Consciousness of professional ethics and responsibility			x			
6	Ability to communicate actively			x			
7	Ability of self-development in fields of interest				x		
8	Ability to learn, choose and use necessary information technologies			x			
9	Lifelong education			x			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	5	70
Hours for off-the-classroom study (Pre-study, practice)	14	3	42
Mid-terms (Including self-study)	2	10	20
Quizzes	-	-	-
Assignments	3	8	24
Final examination (Including self-study)	1	19	19
Total Work Load			175
Total Work Load / 25 (h)			7
ECTS Credit of the Course			7

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
READINGS IN ALGEBRA	MATH 425	1-2	3+0	3	7

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	Barış Efe
Instructors	Barış Efe
Assistants	-
Goals	To teach selected topics in algebra preferably involving parts of advanced books or research articles
Content	Selected topics in algebra

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods		
Solves problems in algebra	1,2,3	1,2,5,7	А		

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

COURSE CONTENT					
Week	Topics	Study Materials			
1	Problems in algebra				
2	Problems in algebra				
3	Problems in algebra				
4	Problems in algebra				
5	Problems in algebra				
6	Problems in algebra				
7	Problems in algebra				
8	Problems in algebra				
9	Problems in algebra				
10	Problems in algebra				
11	Problems in algebra				

12	Problems in algebra	
13	Problems in algebra	
14	Problems in algebra	

RECOMMENDED SOURCES						
Textbook						
Additional Resources						

MATERIAL SHARING					
Documents	Yulearn				
Assignments	-				
Exams	1 midterm, 1 final				

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	40			
Quizzes	-	-			
Assignments	-	-			
Final	1	60			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	60			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	1	40			
Total		100			

COURSE CATEGORY

	COURSE'S CONTRIBUTION TO PROGRAM									
No	No Program Learning Outcomes					Contribution				
		1	2	3	4	5				
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)	x								
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x				
3	Ability form and interpret the relations between research topics in mathematics					x				
4	Ability to define, formulate and solve mathematical problems				x					

5	Consciousness of professional ethics and responsibility			x	
6	Ability to communicate actively			x	
7	Ability of self-development in fields of interest				x
8	Ability to learn, choose and use necessary information technologies	x			
9	Lifelong education				x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities	Quantity	Duration (Hour)	Total Workload (Hour)				
Course Duration (14x Total course hours)	14	3	42				
Hours for off-the-classroom study (Pre-study, practice)	14	7	98				
Mid-terms (Including self study)	1	20	20				
Quizzes	-	-	-				
Assignments	-	-	-				
Final examination (Including self study)	1	21	21				
Total Work Load			171				
Total Work Load / 25 (h)			6,84				
ECTS Credit of the Course			7				

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
IDEALS AND VARIETIES	MATH 426	1,2	3 + 0	3	7	

Prerequisites	MATH 322
Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programs)
Course Type	Elective
Course Coordinator	Mehmet Akif Erdal
Instructors	Mehmet Akif Erdal
Assistants	-
Goals	The aim of this course is to introduce students to the preliminary concepts for classical algebraic geometry and understand the links between geometry and algebra.
Content	Polynomial rings, ideals and varieties. Monomial orderings. Monomial ideals and Dickson's lemma. The Hilbert Basis Theorem and Gröbner Bases. Properties of Groebner bases. Buchberger's algorithm. Applications of Groebner bases. Elimination and Extension theorems. Resultants and the extension theorem.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Knows ideals of polynomial rings and varieties.	1,2,3	1,2,5,7	A,F
2) Knows monomial ordering and monomial ideals.	1,2,3	1,2,5,7	A,F
3) Knows Hilbert Basis Theorem and Gröbner Bases	1,2,3	1,2,5,7	A,F
4) Explains Buchberger's algorithm.	1,2,3	1,2,5,7	A,F
5) Analyzes the link between basic geometric shapes and polynomial ideals.	1,2,3	1,2,5,7	A,F

Teaching Methods: 1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming	
Assessment Methods:	A: Exam, F: Homework Assignments

COURSE CONTENT				
Week	Topics	Study Materials		
1	Polynomials and Affine Space			
2	Affine Varieties			

3	Parametrizations of Affine Varieties	
4	Ideals	
5	Polynomials of One Variable	
6	Orderings on the Monomials in k[x1,, xn].	
7	A Division Algorithm in k[x1,, xn]	
8	Monomial Ideals and Dickson's Lemma	
9	he Hilbert Basis Theorem and Gröbner Bases	
10	Properties of Gröbner Bases, Buchberger's Algorithm	
11	First Applications of Gröbner Bases	
12	Refinements of the Buchberger Criterion	
13	Improvements on Buchberger's Algorithm	
14	Elimination Theory, The Elimination and Extension Theorems	

RECOMMENDED SOURCES				
Textbook	Cox, Little and O'Shea - Ideals, Varieties and Algorithms			
Additional Resources				

MATERIAL SHARING				
Documents	Yulearn			
Assignments	3 homework assignments			
Exams	1 midterm, 1 final			

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	40			
Quizzes		-			
Assignments	3	20			
Final	1	40			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

	COURSE'S CONTRIBUTION TO PROGRAM									
No	o Program Learning Outcomes					Contribution				
		1	2	3	4	5				
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)				X					
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x				
3	Ability form and interpret the relations between research topics in mathematics					x				
4	Ability to define, formulate and solve mathematical problems					x				
5	Consciousness of professional ethics and responsibility			x						
6	Ability to communicate actively			x						
7	Ability of self-development in fields of interest				x					
8	Ability to learn, choose and use necessary information technologies			x						
9	Lifelong education			x						

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	3	42			
Hours for off-the-classroom study (Pre-study, practice)	14	5	70			
Mid-terms (Including self-study)	1	20	20			
Quizzes	-	-	-			
Assignments	3	7	21			
Final examination (Including self-study)	1	20	20			
Total Work Load			173			
Total Work Load / 25 (h)			6,92			
ECTS Credit of the Course			7			

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
COMPUTATIONAL ALGEBRA	MATH 427	1,2	3 + 0	3	7	

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	İlknur Kuşbeyzi Aybar
Instructors	İlknur Kuşbeyzi Aybar
Assistants	-
Goals	The aim of this course is to provide students with a knowledge and understanding of basic results of computational algebra and basic algorithmic approaches to algebra and their implementations.
Content	The Elimination and Extension Theorems, The Geometry of Elimination, Implicitization, Singular Points and Envelopes, Gröbner Bases and the Extension Theorem, Hilbert's Nullstellensatz, Radical Ideals and the Ideal-Variety Correspondence, Sums, Products and Intersections of Ideals, Zariski Closure and Quotients of Ideals, Irreducible Varieties, Decomposition of a Variety, Polynomial Mappings, Quotients of Polynomial Rings, Algorithmic Computations in $k[x1,, xn]/I$, The Coordinate Ring of an Affine Variety, Primary Decomposition of Ideals, The Variety of a Monomial Ideal

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Knows about algebraic geometry and commutative algebra.	1,2,3	1,2,5,7	A,F
2) Knows about Gröbner basis theory and understands the relevant algorithms and their analysis.	1,2,3	1,2,5,7	A,F
3) Knows how to use computational algorithms in commutative algebra and Gröbner basis theory to solve various problems.	1,2,3	1,2,5,7	A,F
4) Participates in research and scientific discussions and is able to learn new topics in computational algebra.	1,2,3	1,2,5,7	A,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam, F: Homework Assignments

	COURSE CONTENT			
Week	Topics Stud			
1	The Elimination and Extension Theorems, The Geometry of Elimination	Textbook 3.1, 3.2		
2	Implicitization	Textbook 3.3		
3	Singular Points and Envelopes	Textbook 3.4		
4	Gröbner Bases and the Extension Theorem	Textbook 3.5		
5	Hilbert's Nullstellensatz	Textbook 4.1		
6	Radical Ideals and the Ideal-Variety Correspondence	Textbook 4.2		
7	Sums, Products and Intersections of Ideals	Textbook 4.3		
8	Zariski Closure and Quotients of Ideals	Textbook 4.4		
9	Irreducible Varieties, Decomposition of a Variety	Textbook 4.5		
10	Decomposition of a Variety into Irreducibles	Textbook 4.6		
11	Primary Decomposition of Ideals	Textbook 4.8		
12	Polynomial Mappings, Quotients of Polynomial Rings	Textbook 5.1, 5.2		
13	Algorithmic Computations in $k[x1,, xn]/I$	Textbook 5.3		
14	The Coordinate Ring of an Affine Variety	Textbook 5.4		

	RECOMMENDED SOURCES				
Textbook	D. A. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Springer, Fourth Edition, 2015.				
Additional Resources	 GM. Greuel, G. Pfister, A Singular introduction to commutative algebra, Springer, 2002. D. Shafer, V. Romanovski, The center and cyclicity problems: a computational algebra approach, Birkhäuser Basel, 2009. V.G. Romanovski, M. Presern, An approach to solving systems of polynomials via modular arithmetics with applications, Journal of Computational and Applied Mathematics, 236, 196–208, 2011. 				

MATERIAL SHARING		
Documents	Yulearn	
Assignments	Assignments 5 homework assignments	
Exams	1 midterm, 1 final	

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE

Mid-terms	1	30
Quizzes	-	-
Assignments	5	20
Final	1	50
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	50
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50
Total		100

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes Contribution		l			
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					х
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility				x	
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies					x
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity Duration Tot (Hour) Work (Hour)			
Course Duration (14x Total course hours)	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	5	70	
Mid-terms (Including self study)	1	10	10	

Quizzes	-	-	-
Assignments	5	5	25
Final examination (Including self study)	1	20	20
Total Work Load			167
Total Work Load / 25 (h)			6.68
ECTS Credit of the Course			7

CO	URSE INFORMA	TION			
Course Title	Code	Semester	L+P Hour	Credits	ECTS
INTRODUCTION TO GRAPH THEORY	MATH 440	1,2	3 + 0	3	7

Prerequisites

-

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	Melike Işim Efe
Instructors	Melike Işim Efe
Assistants	-
Goals	Graphs are used as models for many problems in science, business, and industry. The goal of this course is to introduce students to the basics of graphs, such as graphs, directed graphs, and trees, as well as to real-life applications of graphs and some of their well-known algorithms.
Content	Fundamental concepts of graphs and digraphs. Trees and distance. Matching and factorization. Connectivity, networks. Graph coloring. Planar.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Manipulate the basic concepts associated with graphs such as paths, cycles, vertex degrees, and counting. Directed graphs. Use these definitions in proofs and calculate specific values.	1,2	1,2,5,7	А
2) The concept of tree, spanning trees, optimization.	1,2	1,2,5,7	А
3) Cuts and connectivity. Network Flow problems and algorithms	1,2	1,2,5,7	А
4) Matching and Covers. Algorithms and Applications	1,2	1,2,5,7	А
5) Vertex Colorings	1,2	1,2,5,7	А
6) Characterization of Planar Graphs. Parameters of Planarity.	1,2	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming	
Assessment Methods:	A: Exam	

	COURSE CONTENT	
Week	Topics	Study Materials
1	What Is a Graph? Paths, Cycles, and Trails. Vertex Degrees	

2	Counting. Directed Graphs
3	Basic Properties of Trees. Spanning Trees and Enumeration
4	Optimization and Trees
5	Matching and Covers. Algorithms and Applications.
6	Matching in General Graphs.
7	Cuts and Connectivity. K-connected Graphs.
8	Network Flow Problems
9	Vertex Colorings and Upper Bounds
10	Structure of k-chromatic Graphs. Enumerative Aspects.
11	Embeddings and Euler's Formula. Characterization of Planar Graphs.
12	Parameters of Planarity.
13	Line Graphs and Edge-Coloring. Hamiltonian Cycles.
14	Planarity, Coloring, and Cycles.

	RECOMMENDED SOURCES
Textbook	 Douglas B. West - Introduction to Graph Theory (Pearson) Wilson RJ - Introduction to Graph Theory (Longmans)
Additional Resources	

	MATERIAL SHARING
Documents	Yulearn
Assignments	-
Exams	1 midterm, 1 final

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	1	40	
Quizzes	-	-	
Assignments	-	-	
Final	1	60	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60	

CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	40
Total	100

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes		Con	tribu	tion	
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					X
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics					x
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility			x		
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest					x
8	Ability to learn, choose and use necessary information technologies			x		
9	Lifelong education			x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	6	84	
Mid-terms (Including self study)	1	20	20	
Quizzes	-			
Assignments	-			
Final examination (Including self study)	1	20	20	
Total Work Load			166	
Total Work Load / 25 (h)			6.64	
ECTS Credit of the Course			7	

COUR	SE INFORMAT	ION			
Course Title	Code	Semester	L+P Hour	Credits	ECTS
READINGS IN DIFFERENTIAL EQUATIONS	MATH 441	1-2	3+0	3	7

Prerequisites -

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	İlknur Kuşbeyzi Aybar
Instructors	İlknur Kuşbeyzi Aybar
Assistants	-
Goals	To teach selected topics in differential equations preferably involving parts of advanced books or research articles
Content	Selected topics in differential equations

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Solves problems in differential equations	1,2,3	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT					
Week	Topics	Study Materials				
1	Problems in differential equations					
2	Problems in differential equations					
3	Problems in differential equations					
4	Problems in differential equations					
5	Problems in differential equations					
6	Problems in differential equations					
7	Problems in differential equations					
8	Problems in differential equations					
9	Problems in differential equations					

10	Problems in differential equations	
11	Problems in differential equations	
12	Problems in differential equations	
13	Problems in differential equations	
14	Problems in differential equations	

RECOMMENDED SOURCES				
Textbook				
Additional Resources				

MATERIAL SHARING				
Documents	Yulearn			
Assignments	-			
Exams	1 midterm, 1 final			

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	40			
Quizzes	-	-			
Assignments	-	-			
Final	1	60			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40			
Total		100			

	COURSE'S CONTRIBUTION TO PROGRAM						
No Program Learning Outcomes Contribut					ition	l	
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra,	x					

	differential equations and geometry)				
2	Acquiring fundamental knowledge on fundamental research fields in mathematics				x
3	Ability form and interpret the relations between research topics in mathematics				x
4	Ability to define, formulate and solve mathematical problems			x	
5	Consciousness of professional ethics and responsibility			x	
6	Ability to communicate actively			x	
7	Ability of self-development in fields of interest				x
8	Ability to learn, choose and use necessary information technologies	x			
9	Lifelong education				x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	3	42			
Hours for off-the-classroom study (Pre-study, practice)	14	6	84			
Mid-terms (Including self study)	1	20	20			
Quizzes	-	-	-			
Assignments	-	-	-			
Final examination (Including self study)	1	20	20			
Total Work Load			166			
Total Work Load / 25 (h)			6.64			
ECTS Credit of the Course			7			

COURSE INFORMATION						
Course Title	Course Title Code Semester L+P Hour Credits E					
READINGS IN ANALYSIS	MATH 453	1-2	3	3	7	

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Elective
Course Coordinator	Barış Efe
Instructors	Barış Efe
Assistants	-
Goals	To teach selected topics in analysis preferably involving parts of advanced books or research articles
Content	Selected topics in analysis

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Solves problems in analysis	1,2,3	1,2,5,7	А

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Problems in analysis				
2	Problems in analysis				
3	Problems in analysis				
4	Problems in analysis				
5	Problems in analysis				
6	Problems in analysis				
7	Problems in analysis				
8	Problems in analysis				
9	Problems in analysis				

10	Problems in analysis	
11	Problems in analysis	
12	Problems in analysis	
13	Problems in analysis	
14	Problems in analysis	

RECOMMENDED SOURCES				
Textbook				
Additional Resources				

MATERIAL SHARING			
Documents	Yulearn		
Assignments	-		
Exams	1 midterm, 1 final		

ASSESSMENT						
IN-TERM STUDIES	NUMBER	PERCENTAGE				
Mid-terms	1	40				
Quizzes	-	-				
Assignments	-	-				
Final	1	60				
Total		100				
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60				
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		40				
Total		100				

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No Program Learning Outcomes Contrib				tribu	ition	L
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra,	x				

	differential equations and geometry)				
2	Acquiring fundamental knowledge on fundamental research fields in mathematics				x
3	Ability form and interpret the relations between research topics in mathematics				x
4	Ability to define, formulate and solve mathematical problems			x	
5	Consciousness of professional ethics and responsibility			x	
6	Ability to communicate actively			x	
7	Ability of self-development in fields of interest				x
8	Ability to learn, choose and use necessary information technologies	x			
9	Lifelong education				x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	14	3	42			
Hours for off-the-classroom study (Pre-study, practice)	14	6	84			
Mid-terms (Including self study)	1	20	20			
Quizzes	-	-	-			
Assignments	-	-	-			
Final examination (Including self study)	1	20	20			
Total Work Load			166			
Total Work Load / 25 (h)			6.64			
ECTS Credit of the Course			7			

COURSE INFORMATION						
Course Title	Code Semester		L+P Hour	Credits	ECTS	
MATHEMATICAL STATISTICS	MATH 462	1-2	3+0	3	7	

Prerequisites	-
---------------	---

Language of Instruction	English		
Course Level	Bachelor's Degree (First Cycle Programmes)		
Course Type	Elective		
Course Coordinator	ülce Curan		
Instructors	ülce Curan		
Assistants	-		
Goals	To prepare students for a career in actuarial science, graduate studies in financial engineering/mathematics and high school teachers to teach probability and statistics in high schools.		
Content	Introduction and background. Populations and samples. Measures of the center of a set of observations. Measurement of variability. Sampling, sampling distributions. Estimations. Hypothesis testing. Statistical decision theory. Contingency Tables. Regression and correlation analysis.		

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Compute measures od central tendency	3,4,5,6,7,8,9	1,2,5,7	A,F
2) Compute measures of variability	3,4,5,6,7,8,9	1,2,5,7	A,F
3) Estimate parameters of a distribution	3,4,5,6,7,8,9	1,2,5,7	A,F
4) Perform hypothesis testing	3,4,5,6,7,8,9	1,2,5,7	A,F
5) Apply contingency tables	3,4,5,6,7,8,9	1,2,5,7	A,F
6) Use regression equations	3,4,5,6,7,8,9	1,2,5,7	A,F

Teaching Methods:	1: Lecture, 2: Interactive Lecture, 5: Problem Solving, 7: Brainstorming
Assessment Methods:	A: Exam, F: Homework Assignments

COURSE CONTENT		
Week	Topics	Study Materials
1	Descriptive Statistics. Histograms, measures of Central Tendency and Dispersion.	
2	Estimating Parameters: the method of Maximum Likelihood and the Method of	

	Moments.	
3	Properties of Estimators: Unbiased, Minimum Variance Estimators	
4	The Rao- Cramer Inequality. Efficiency, Sufficiency, Consistency.	
5	Hypothesis testing concerning the Mean of the Normal Distribution. Null and Alternative Hypothesis. Type I and II Errors.	
6	Critical Point, Test Statistic, One Tail and Two Tail Tests when σ is Known.	
7	P-value. Small sample T-test. Power of Test.	
8	Relation between Type I error, Type II error and sample size. Test concerning the parameter p of the Binomial distribution.	
9	Confidence intervals concerning $\boldsymbol{\mu}$ and $\boldsymbol{p}.$ Determining the sample size.	
10	Paired t-test, tests concerning the means of two populations. Test concerning a single variance. Test concerning two variances.	
11	Hypothesis testing concerning non-normal data. The likelihood ratio test.	
12	The Multinomial Distribution Goodness-of-Fit Tests: All Parameters Known.	
13	Contingency Tables. Regression Analysis	
14	Regressions Analysis. The Method of Least Squares. The Linear Model. Covariance and Correlation.	

RECOMMENDED SOURCES		
Textbook	Mathematical Statistics with Applications. Wackerly, Mendenhall, Scheaffer. Brooks/Cole	
Additional Resources		

MATERIAL SHARING		
Documents	Yulearn	
Assignments	Homework sets	
Exams	1 midterm, 1 final	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	30		
Quizzes	-	-		
Assignments	3	20		
Final	1	50		

Total	100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	50
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	50
Total	100

E

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes	Contribution				
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					x
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					x
3	Ability form and interpret the relations between research topics in mathematics			x		
4	Ability to define, formulate and solve mathematical problems					x
5	Consciousness of professional ethics and responsibility		x			
6	Ability to communicate actively			x		
7	Ability of self-development in fields of interest			x		
8	Ability to learn, choose and use necessary information technologies			x		
9	Lifelong education				x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	5	70
Mid-terms (Including self study)	1	28	28
Assignments	3	5	15
Final examination (Including self study)	1	20	20
Total Work Load			175
Total Work Load / 25 (h)			7
ECTS Credit of the Course			7

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
PHYSICS I	PHYS 101	1	3 +1+2	4	6

Prerequisites	-
---------------	---

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Faculty Members of the Physics Department
Instructors	Faculty Members of the Physics Department
Assistants	Assistants of the Physics Department
Goals	The aim of this course is to teach concepts of mechanics.
Content	Measurement and Unit, Vectors, Motion in one and two dimensions, Newton's Laws of Motion, Work, Power, Energy, Momentum and Collisions, Rotational Motion, Torque and Angular Momentum, Universal Gravitational Law.

Learning Outcomes	Teaching Methods	Assessment Methods
1) Relates units and their conversion	1,2,3	A,B,I
2) Calculates the operations with vectors	1,2,3	A,B,I
3) Analysis the translational motion	1,2,3	A,B,I
4) Writes down the equations of motion for the systems with and without friction	1,2,3	A,B,I
5) Applies the work-energy principle	1,2,3	A,B,I
6) Applies the momentum and center of mass information to various cases	1,2,3	A,B,I
7) Analyses the cases about rotation and angular momentum.	1,2,3	A,B,I
8) Knows the universal gravitational law	1,2,3	A,B,I

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Discussion,
Assessment Methods:	A: Testing, B: Final, I:Lab

	COURSE CONTENT		
Week	Topics	Study Materials	

1	Measurement	Units	
2	Motion in one dimension	Kinematic equations	
3	Motion in two dimensions and vectors	Operations with vectors	
4	Dynamics: Newton's Laws of Motion	Laws of dynamics	
5	Dynamics: Newton's Laws of Motion	Newton's Laws	
6	Further Applications of Newton's Laws of Motion	Newton's Laws	
7	Work, Power, Energy – Midterm I	Revision	
8	Conservation of Energy	What is energy?	
9	Linear Momentum and Collisions	Linear Momentum and vectors	
10	Linear Momentum and Collisions	Linear Momentum and vectors	
11	Rotational Motion	Circular motion	
12	Rotational Motion – Midterm II	Rotational kinematics	
13	Conservation of Angular Momentum	Angular momentum	
14	Universal Gravitational Law	What is the gravitational field?	

RECOMMENDED SOURCES		
Textbook	Douglas C. GIANCOLI, Physics for Scientists & Engineers , 4th Edition, Pearson	
Additional Resources	Halliday, Resnick, Walker: Fundamentals of Physics, 6th Edition-Serway, Jewett, Physics for Scientists and Engineers with Modern Physics, 8th Edition	

MATERIAL SHARING		
Documents	Mechanics Lab Experiments Handouts	
Assignments		
Exams		

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	2	50
Lab	12	20
Final	1	30
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30

CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	70
Total	100

Support courses

COURSE'S CONTRIBUTION TO PROGRAM									
No	Program Learning Outcomes	Contribution							
		1	2	3	4	5			
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)				x				
2	Acquiring fundamental knowledge on fundamental research fields in mathematics		x						
3	Ability form and interpret the relations between research topics in mathematics		x						
4	Ability to define, formulate and solve mathematical problems				x				
5	Consciousness of professional ethics and responsibility			x					
6	Ability to communicate actively			x					
7	Ability of self-development in fields of interest				x				
8	Ability to learn, choose and use necessary information technologies		x						
9	Lifelong education				x				

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION								
Activities	Quantity	Duration (Hour)	Total Workload (Hour)					
Course Duration (Including the exam week: 14x Total course hours)	14	4	56					
Hours for off-the-classroom study (Pre-study, practice)	14	4	56					
Mid-terms	2	2	4					
Lab	12	2	24					
Final examination	1	3	3					
Total Work Load			143					
Total Work Load / 25 (h)			5.72					
ECTS Credit of the Course			6					

COURSE INFORMATION						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
PHYSICS II	PHYS 102	2	3 +(1+2)	4	6	

Prerequisites	PHYS101 and MATH131
---------------	---------------------

Language of Instruction	English	
Course Level	Bachelor's Degree (First Cycle Programmes)	
Course Type	Compulsory	
Course Coordinator	Faculty Members of the Physics Department	
Instructors	Faculty Members of the Physics Department	
Assistants		
Goals	The aim of this course is to teach basic concepts of electricity and magnetism and in particular, to have students learn for themselves how physics as a discipline can be used to obtain a deep understanding of how the world works.	
Content	Electric Charge, Electric Fields, Gauss' Law, Electric Potential, Capacitance, Current and Resistance, Circuits, Magnetic Fields, Magnetic Field Due to Currents, Induction and Inductance, Magnetism of Matter, Maxwell's Equations, Electromagnetic Oscillations and Alternating Current, LC oscillator, RLC Phase diagrams	

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Expresses the basic (theoretical and experimental) concepts of electricity and magnetism.	1,4,7,9	1,2,5,14,15	A,B,I
2) Identifies, formulates and solves physical problems regarding the electricity and magnetism.	1,4,7,9	1,2,5,14,15	A,B,I
3) Relates the physics of electricity and magnetism and other branches of physics, and learns how physics as a discipline can be used to obtain a deep understanding of how the world works.	1,4,7,9	1,2,5,14,15	A,B,I
4) Gets prepared for the advanced physics lectures regarding electricity and magnetism and learns a range of methods for applying these understandings and problems toward solving a broad range of physical problems .	1,4,7,9	1,2,5,14,15	A,B,I

```
Teaching Methods:
```

1: Lecture, 2: Question-Answer, 5: Problem Solving, 14: Laboratory ; 15:Homework

A: Testing, B: Final, I:Laboratory

	COURSE CONTENT				
Week	Topics	Study Materials			
1	ELECTRIC CHARGE, ELECTRIC FIELDS	electric charge			
2	GAUSS'S LAW	Electric field			
3	ELECTRIC POTENTIAL	Potantial			
4	CAPACITANCE	Capacitors			
5	Midterm Exam				
6	CURRENT AND RESISTANCE	Current, circuit elements			
7	CIRCUITS	Electric circuits			
8	MAGNETIC FIELDS	Magnetic field			
9	MAGNETIC FIELD DUE TO CURRENTS	Sources of magnetic fields			
10	Midterm Exam				
11	INDUCTION AND INDUCTANCE	Faraday's Law of Induction			
12	MAGNETISM OF MATTER	Magnetism			
13	MAXWELL'S EQUATIONS	Maxwell			
14	ELECTROMAGNETIC OSCILLATIONS, LC OSCILLATOR, RLC	Electromagnetic oscillations in the electric circuits			

RECOMMENDED SOURCES				
Textbook	"PHYSICS FOR SCIENTISTS AND ENGINEERS" GIANCOLI, 4^{TH} EDITION, PRENTICE HALL			
Additional Resources	FUNDAMENTALS OF PHYSICS" HALLIDAY RESNICK , "PHYSICS", SERWAY.			

MATERIAL SHARING		
Documents"FIRST YEAR PHYSICS LABORATORY EXPERIMENTS" YEDİTEPE UNIVERSITY- DEPARTMENT OF PHYSICS (2002-2013)		
Assignments		
Exams		

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	71		

Laboratory	12	29
Assignment	10	0
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		70
Total		100

Support courses

COURSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes		Contribution				
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)				x		
2	Acquiring fundamental knowledge on fundamental research fields in mathematics		x				
3	Ability form and interpret the relations between research topics in mathematics		x				
4	Ability to define, formulate and solve mathematical problems				x		
5	Consciousness of professional ethics and responsibility			x			
6	Ability to communicate actively			х			
7	Ability of self-development in fields of interest				x		
8	Ability to learn, choose and use necessary information technologies		x				
9	Lifelong education				x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY	ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities		Duration (Hour)	Total Workload (Hour)					
Course Duration (Including the exam week: 14x Total course hours)	14	4	56					
Hours for off-the-classroom study (Pre-study, practice)	14	4	56					
Mid-terms	2	2	4					
Lab	12	2	24					
Final examination	1	3	3					

Total Work Load		
Total Work Load / 25 (h)		143
ECTS Credit of the Course		5.72
ECTS Credit of the Course		6

HUM 103 - COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
HUMANITIES	HUM 103	1,2	2+0	2	3

GENERAL INFORMATION This course is mandatory for ALL undergraduate students of Yeditepe University. Each student takes this course in line with the academic program of his/her Faculty. Prerequisites None **Coordination Office** GSF Building 708, Monday 9-18 **Attendance (Lectures)** Students are required to attend to at least %80 of the classes. Language of Instruction Turkish **Course Level** Undergraduate **Course Type** Compulsory **Course Coordinator** Dr. Ferzan Durul ferzan.durul@yeditepe.edu.tr Goals This course aims to provide: a comprehensive review of the history of civilization; an understanding of the role of multiple disciplines (philosophy, arts, literature, science) as they progressed within various civilizations around the globe throughout history; how these humanities disciplines contributed to the formation of the value system of our contemporary civilization; to develop the ability to analyze contemporary social movements. Particular emphasis is given to the fields of science, philosophy, arts and literature. Content The start of civilization on earth, the Neolithic age; Turkish, Indian and Chinese civilizations and their interactions; the developments in the Mediterranean cultural basin; the elements of civilization in the middle ages; the examination of eastern and Eurasian civilizations with a particular focus on the formation in arts, social sciences, technology, science; The renaissance, the enlightenment, the American and the French revolution; modernization phases in the Turkish civilization; the new world order; the study of civilizations in the 21st century.

COURSE LEARNING OUTCOMES					
Students who take this course will	Teaching Methods	Assessment Methods			
gain an understanding of the evolution of science and the scientific approach throughout history, and the appreciation of scientific thinking as the most important dimension of the value systems of contemporary human civilization.	1,2,3	A,B			
be able to interpret and appreciate the diversity of the cultures and the dynamics of nations throughout history in their geographical and historical context.	1,2,3	A,B			

be able to understand the formation and evol ethics and justice, and the importance of th environment	eir application in today's global	1,2,3	A,B
be able to understand the formation, evolution and the passing among nations and subsequent generations of the arts, esthetics and literature throughout history.		1,2,3	A,B
gain an appreciation of the development of the methods of inquiry and the importance of critical thinking in today's global environment.		1,2,3	A,B
understand the eastern roots of civilizations (as opposed to only western), gain a multi-centered civilization appreciaton, and realize the value of conceptual frames such as the Turkish World and the Eastern World.		1,2,3	A,B
Teaching Methods:1: Lecture, 2: Q-A, 3: Debate			
Assessment Methods: A: Exam , B: Paper			

	COURSE C	ONTENT				
Week	eek Topics Study Materials					
1	What is "Human"?	İnsanın Tarih Yolculuğu, Bölüm 1 İnsan Nedir? Sorusu Düşünce Dünyasında Yerini Alıyor (Syf: 21-42)				
2	Culture and Cvilization	İnsanın Tarih Yolculuğu, Bölüm 2 İnsanın Kültürel Özne'ye Dönüşüm Hikayesi				
		(Syf: 43-60)				
3	Cultural Phases I: Paleolithic-Mesolithic Period	İnsanın Tarih Yolculuğu, Bölüm 3 Kültürel Evreler: Avcılıktan Yerleşik hayata Geçiş				
		(Syf: 61-83)				
4	Cultural Phases II: NeolithicPeriod	İnsanın Tarih Yolculuğu, Bölüm 3 Kültürel Evreler: Avcılıktan Yerleşik hayata Geçiş				
		(Syf: 61-83)				
5	Early Age Civilizations I: Mesopotamia	sanın Tarih Yolculuğu, Bölüm 4 Bereketli Hilal'in Uygarlıkları: Mezopotamya ve Mısır				
		(Syf: 85-114)				
6	Early Age Civilizations II: Indian, Chinese, Turkish	sanın Tarih Yolculuğu, Bölüm 4 Bereketli Hilal'in Uygarlıkları: Mezopotamya ve Mısır				
		(Syf: 85-114)				
7	Mediterranean Cultural Basin I: Signs of Greek, Turkish and Roman	İnsanın Tarih Yolculuğu, Bölüm 6 Eski Yunan Medeniyeti				

		(Syf: 145-166) Bölüm 7, Roma Tarihi (167-193)
8	Mid-term exam	
9	Mediterranean Cultural Basin I: Signs of Greek, Turkish and Roman	İnsanın Tarih Yolculuğu, Bölüm 6 Eski Yunan Medeniyeti (Syf: 145-166) Bölüm 7, Roma Tarihi (167-193)
10	Middle Ages and feudality	İnsanın Tarih Yolculuğu, Bölüm 9 Orta Çağda Avrupa ve Feodalizm (Syf: 219-242)
11	Eastern Cultural World: The First Civilizations of the Muslim Turkish States	İnsanın Tarih Yolculuğu, Bölüm 10 İlk Müslüman Türk Devletleri (Syf: 243-268)
12	Renaissance Reform	İnsanın Tarih Yolculuğu, Bölüm 11 Rönesans Nedir? (Syf: 269-286) Bölüm 12 Reform: Dinsel Yorumların Çoğullaşması (Syf: 287-302)
13	Age of Revolutions; English Revolution; American Revolution; The Enlightenment; French Revolution; Modernization in Turkish Civilization	İnsanın Tarih yolculuğu Bölüm 13 Aydınlanma (Syf: 303-323) Bölüm 14 Sanayi Devrimi (Syf: 329-347)
14	Evaluation and review	

	COURSE MATERIALS
Text Books	İnsanın Tarih Yolculuğu, Yeditepe Üniversitesi Yayınevi, 2020, ISBN: 978-975-307-109-3

ASSESSMENT			
	NUMBER	PERCENTAGE	
Midterm	1	40	
Final	1	60	

Total	100
-------	-----

	ECTS ALLOCATION					
Activity	Quantity	Duration (Hours)	Total Workload (Hours)			
Duration (Total of exam and class hours)	14	2	28			
Out of class study time	14	3	42			
Mid-term exam	1	1	1			
Final	1	1	1			
Readind	1	3	3			
Total Work Load			75			
Total Work Load / 25 (h)			3			

ECTS Credits

3

CONTRIBUTION TO PROGRAM OUTCOMES								
No	Program Learning Outcomes		Contribution					
		1	2	3	4	5		
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)							
2	Acquiring fundamental knowledge on fundamental research fields in mathematics							
3	Ability form and interpret the relations between research topics in mathematics							
4	Ability to define, formulate and solve mathematical problems							
5	Consciousness of professional ethics and responsibility			x				
6	Ability to communicate actively					x		
7	Ability of self-development in fields of interest				x			
8	Ability to learn, choose and use necessary information technologies							
9	Lifelong education				x			

COURSE INFORMATION							
Course Title	Code	Semester	L+P Hour	L+P Hour Credits EC			
TURKISH LANGUAGE I	TKL 201	1	2+0	2	2		

Prerequisites -	
-----------------	--

Language of Instruction	Turkish 🧭
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Emrah Pelvanoğlu
Instructors	Emrah Pelvanoğlu
Assistants	-
Goals	The course aims at helping students improve their skill in written and oral narration, by teaching them features and rules of the language.
Content	A general information about language in general and world languages, the historical evolution of Turkish and its relationship with other languages, phonetical and morphological characteristics of Modern Turkish, applying/practicing rules of orthography and punctuation

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1-Aims at helping students use punctuation marks and orthography correctly	5,6,7,9	1	А
2-Aims at helping students understand basic features of language and criteria for classifying languages	6,7,9	1	А
3-Aims at helping students remember the evolution of Turkish	6,7	1	А
4-Aims at teaching students features of Turkish and how to apply them	6,9	1	А
5-Aims at improving students' skills in written and oral narration	6,7,9	1	А

Teaching Methods:	1. Lecture 2. C 6. Microteaching	ase study 3. Disc 7. Problem solving	ussion 4. Demonstration	5. Group work
Assessment Methods:	A. Classical exam D. True-False	B. Multiple-choice t E. Oral exam	est C. Incomplete F. Portfolio	
	G. Performance type	H. Report		

	COURSE CONTENT					
Week	Topics	Study Materials				
1	Introduction/orientation: Giving students information about the content of the course and how the material will be covered	Related readings				
2	Punctuation, general rules of spelling	Related readings				
3	Definition and basic features of, language, relationship /parallel between language and culture	Related readings				
4	Types of languages	Related readings				
5	Morphological classification of world languages	Related readings				
6	Language Families	Related readings				
7	Information about Short story-which is one of the genres of written narrative	Related readings				
8	Midterm Exam	Related readings				
9	Historical evolution of Turkish-alphabets used by Turks	Related readings				
10	Phonetical characteristics and features of Turkish	Related readings				
11	Clichés	Related readings				
12	Ungrammatical sentences-examples(wrong word use)	Related readings				
13	Ungrammatical sentences-examples (badly constructed sentences)	Related readings				
14	Information about Essay-which is one of the genres of written narrative	Related readings				

	RECOMMENDED SOURCES				
Textbook	Aksan, Doğan(1975), "Anadili", <u>Türk Dili</u> ,31/285,s. 423-434 Aksan, Doğan(1987), <u>Her Yönüyle Dil, Ana Çizgileriyle Dilbilim</u> ,3 cilt , Ankara Aksan, Doğan (2000), <u>Türkiye Türkçesinin Dünü, Bugünü, Yarını</u> , Ankara, Bilgi yayınevi Ali, Sabahattin (2005), <u>Yeni Dünya</u> , İstanbul, YKY Ataç, Nurullah (2010), <u>Günlerin Getirdiği-Sözden Söze</u> , 7.b., İstanbul, YKY Atay, Oğuz (2000), <u>Korkuyu Beklerken</u> , İstanbul, İletişim Yayınları Çotuksöken, Yusuf (2007), <u>Uygulamalı Türk Dili</u> , İstanbul, Papatya Yayıncılık Hepçilingirler, Feyza (2013), <u>Türkçe "Off"</u> , 43.b.,İstanbul, Everest Yayınları Korkmaz, Zeynep ve diğerleri (1995), <u>Türk Dili ve Kompozisyon Bilgileri</u> , Ankara, Yüksek Öğretim Kurulu Matbaası Montaigne (1991), <u>Denemeler</u> ,(Türkçesi: Sabahattin Eyüboğlu), İstanbul,Cem Yayınevi Özdemir, Emin (2008), <u>Sözlü Yazılı Anlatım Sanatı Kompozisyon</u> , İstanbul, Remzi Kitabevi Taner, Haldun(1995), <u>Çok Güzelsin Gitme Dur</u> , İstanbul, Bilgi Yayınevi Taner, Haldun (2005), <u>Şişhane'ye Yağmur Yağıyordu/Ayışığında "Çalışkur"</u> , Ankara, Bilgi Yayınevi <u>Türkçe Ders Notları -TKL 201</u> (Haz. Bedri Selimhocaoğlu) <u>Türk Dili,Yazılı Anlatım-Sözlü Anlatım</u> (2009), (Ed.Nurettin Demir, Emine Yılmaz),Ankara, Nobel Yayın Dağıtım <u>Türkçe Sözlük (</u> 2011), Türk Dil Kurumu Yayınları, 11. b., Ankara				

	<u>Yazım Kılavuzu</u> (2009), Türk Dil Kurumu Yayınları, 26. b., Ankara
Additional Resources	

	MATERIAL SHARING
Documents	Xerox copies given to students before class.
Assignments	
Exams	

NUMBER	PERCENTAGE
1	100
	100
	50
	50
	100

COURSE CATEGORY

Humanities, Communication and Management Skills Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes	Contribution			ı	
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					
3	Ability form and interpret the relations between research topics in mathematics					
4	Ability to define, formulate and solve mathematical problems					
5	Consciousness of professional ethics and responsibility			x		
6	Ability to communicate actively					x
7	Ability of self-development in fields of interest				x	
8	Ability to learn, choose and use necessary information technologies					

9	Lifelong education		x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities		Duration (Hour)	Total Workload (Hour)	
Course Duration (14x Total course hours)	15	2	30	
Hours for off-the-classroom study (Pre-study, practice)	15	1	15	
Mid-terms (Including self study)	1	2	2	
Quizzes	-	-	-	
Assignments (Term Paper)	1	1	1	
Final examination (Including self study)	1	2	2	
Total Work Load			50	
Total Work Load / 25 (h)			2	
ECTS Credit of the Course			2	

COURSE INFORMATION					
Course Title Co		Semester	L+P Hour	Credits	ECTS
TURKISH LANGUAGE 2	TKL 202	2	2 + 0	2	2

Prerequisites -

Language of Instruction	Turkish 🧭
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	Emrah Pelvanoğlu
Instructors	Emrah Pelvanoğlu
Assistants	
Goals	The course aims at helping students improve their skill in written and oral narration, by teaching them characteristics and rules of the language
Content	Lexicon of Turkish, study of literary texts, rules for formal correspondence, format and rules for scientific research writing and genres of oral narration

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1-Aims at helping students understand the subject, point of view and the main theme in fiction and informative texts	5,6,7,9	1	А
2-Aims at helping students understand the means and possibilities of Turkish narration	6,7,9	1	А
3-Aims at helping students understand, interpret and apply fiction and informative texts?	6,7	1	А
4-Aims at teaching how to write a petition, report, minutes, business letters	6,9	1	А
5-Aims at improving the students' skills in written and oral narration	6,7,9	1	А

Teaching Methods:	1. Lecture2. 06. Microteaching	Case study 7. Problem	3. Discussion solving	4. Demonstration	5. Group work
Assessment Methods:	A. Classical exam D. True-False G. Performance type	E. Oral exan		C. Incomplete F. Portfolio	

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Introduction/orientation: Giving students information about the content of the course and how the material will be covered	Related readings			
2	Informative texts, fiction , subject / topic, point of view, main theme of the text.	Related readings			
3	Kinds of vocabulary,(what)a parapraph (is),genres of narrative	Related readings			
4	how to write a petition, ,preparing a CV	Related readings			
5	Written narrative genres: memoirs, travel, diary and letter	Related readings			
6	Written narrative genres :article, essay, newspaper article / column, critique	Related readings			
7	(writing) reports, minutes (of a meeting)	Related readings			
8	Midterm Exam	Related readings			
9	Scientific research, writing summary, taking notes, bibliography and rules for footnote writing	Related readings			
10	Lexicon of Turkish of Turkish(native words, loan words, idioms)	Related readings			
11	Turkish Lexicon (proverbs, cliches, reduplication of words)	Related readings			
12	Syntax of Turkish and semantics	Related readings			
13	Fiction (novel, poetry, theatre)	Related readings			
14	Genres of oral narrative	Related readings			

RECOMMENDED SOURCES				
Textbook	Aksan, Doğan (1999), <u>Anlambilim</u> , Ankara, Engin yayınevi Aksan, Doğan(1987), <u>Her Yönüyle Dil. Ana Çizgileriyle Dilbilim</u> ,3 cilt , Ankara Aksan, Doğan (2000), <u>Türkçenin Sözvarlığı</u> , Ankara, Engin Yayınevi Aksan, Doğan (2000), <u>Türkiye Türkçesinin Dünü, Bugünü, Yarını</u> , Ankara, Bilgi yayınevi Atay, Falih Rıfkı (2004), <u>Çankaya</u> , İstanbul, Pozitif yayınları Atay, Oğuz (2012), <u>Bir Bilim Adamının Romanı Mustafa İnan</u> ,36.b., İstanbul,İletişim Yay. Atay, Oğuz (2013), <u>Günlük</u> ,16. b., İstanbul, İletişim Yay. Boysan, Aydın(1997), Yollarda, Dünyadan Gezi Yazıları, 2. b., Ankara, Bilgi Yayınevi Çotuksöken, Yusuf (2007), <u>Uygulamalı Türk Dili</u> , İstanbul,Papatya Yayıncılık Kongar, Emre (2008), <u>Kızlarıma Mektuplar Yaşamdan Satırbaşları</u> , 45.b., İstanbul, Remzi Kitabevi Korkmaz, Zeynep ve diğerleri (1995), <u>Türk Dili ve Kompozisyon Bilgileri</u> , Ankara, Yüksek Öğretim Kurulu Matbaası Özdemir, Emin (2008), <u>Sözlü Yazılı Anlatım Sanatı Kompozisyon</u> , İstanbul, Remzi Kitabevi Özdemir, Emin (1994), <u>Yazınsal Türler</u> , 2. b.,Ankara, Ümit Yayıncılık Tapınar, Ahmet Hamdi (2004), <u>Saatleri Ayarlama Enstitüsü</u> , İstanbul, Dergah Yayınları <u>Türkçe Ders Notları -TKL 202</u> (Haz. Bedri Selimhocaoğlu) <u>Türk Dili,Yazılı Anlatım-Sözlü Anlatım</u> (2009), (Ed.Nurettin Demir, Emine			

<u>Türkçe Sözlük (</u> 2011), Türk Dil Kurumu Yayınları, 11. b., Ankara <u>Yazım Kılavuzu</u> (2009), Türk Dil Kurumu Yayınları, 26. b., Ankara
Yılmaz),Ankara, Nobel Yayın Dağıtım

Additional Resources

MATERIAL SHARING				
Documents Xerox copies given to students before class.				
Assignments				
Exams				

ASSESSMENT				
NUMBER	PERCENTAGE			
1	100			
	100			
	50			
	50			
	100			
_				

COURSE CATEGORY

Humanities, Communication and Management Skills Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes		Contribution			n
		1	2	3	4	5
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)					
2	Acquiring fundamental knowledge on fundamental research fields in mathematics					
3	Ability form and interpret the relations between research topics in mathematics					
4	Ability to define, formulate and solve mathematical problems					
5	Consciousness of professional ethics and responsibility			х		
6	Ability to communicate actively					x

7	Ability of self-development in fields of interest		x	
8	Ability to learn, choose and use necessary information technologies			
9	Lifelong education		x	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities		Duration (Hour)	Total Workload (Hour)			
Course Duration (14x Total course hours)	15	2	30			
Hours for off-the-classroom study (Pre-study, practice)	15	1	15			
Mid-terms (Including self study)	1	2	2			
Quizzes						
Assignments (Term Paper)	1	1	1			
Final examination (Including self study)	1	2	2			
Total Work Load			50			
Total Work Load / 25 (h)			2			
ECTS Credit of the Course			2			

COURSE INFORMATION								
Course Title	Code	Semester	L+P Hour	Credits	ECTS			
HISTORY OF TURKISH REVOLUTION I	HTR 301	1	2+0	2	2			

Prerequisites -	
-----------------	--

Language of Instruction	Turkish
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	
Instructors	
Assistants	
Goals	The basic purpose of the programme is to provide the students with a common understanding on the usefulness and the effective methods of studying history, on the importance of revolutionary history of Turkey and on the role of Ataturk,
Content	The fields of study of the programme are the Ottoman history, war of independence, achievements and leadership values of Mustafa Kemal Ataturk the process of founding the Turkish Republic, social and political history of the 20th century.

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Expresses the historical background of Republic of Turkey	5,6,7,9	1,2,3	А
2) Analyzes Turkish War of Independence after the First World War,	6,7,9	1,2,3	А
3) Relates National Movement and its aims.	6,7	1,2,3	А
4) Explains the foundation philosophy of The Grand National Assembly of Turkey	6,9	1,2,3	А
5) Interprets the fully independence of a new Turkish state	6,7,9	1,2,3	А
6) Teaches the basic principles of Republic	6,7,9	1,2,3	А

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Discussion,
Assessment Methods:	A: Exam ,B; Test C: Homework

	COURSE CONTENT				
Week	Topics	Study Materials			
1	The Enlightenment Period				
2	Industrial and French Revolutions				
3	The Europe in 19th century and the processes which caused to the First World War				
4	Trials for the modernization in Ottoman state				
5	Tanzimat - Islahat Reforms and Constitutionalism				
6	The war of Trablusgarp and Balkans and their results				
7	The First World War and Armistice				
8	Midterm Exam				
9	The developments after Armistice and Mustafa Kemal's departure to Samsun				
10	The Aim of National Movement, Methods and the period of Congress				
11	National Ant, the period of Grand National Assembly of Turkey				
12	The Fronts and final treaties which closed the Fronts				
13	Sakarya War, Battle of Dumlupinar, Armistice of Mudanya and the treaty of Laussanne, Abolishment of Sultanate				
14	General Revision				

RECOMMENDED SOURCES				
Textbook				
Additional Resources	 İmparatorluktan Ulus Devlete Türk İnkılap Tarihi, Öztürk, Cemil (Prof.Dr.) (Editör) Yazarlar : Tülay Alim BARAN (Prof.Dr.),Edip Başer (Dr.), Süleyman Beyoğlu(Prof.Dr.), Handan Diker(Dr.), Vahdettin Engin (Prof.Dr.), Cezmi Eraslan (Prof.Dr.), Arzu M.Erdoğan (Dr.), Cemil Öztürk (Prof.Dr.) Nutuk 			

	MATERIAL SHARING					
Documents						
Assignments						
Exams						

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	1	100			
Laboratory					
Assignment					
Tota	1	100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50			
Tota	1	100			

COURSE CATEGORY

Humanities, Communication and Management Skills Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	Program Learning Outcomes	Contribution			n		
		1	2	3	4	5	
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)						
2	Acquiring fundamental knowledge on fundamental research fields in mathematics						
3	Ability form and interpret the relations between research topics in mathematics						
4	Ability to define, formulate and solve mathematical problems						
5	Consciousness of professional ethics and responsibility			х			
6	Ability to communicate actively			х			
7	Ability of self-development in fields of interest				x		
8	Ability to learn, choose and use necessary information technologies						
9	Lifelong education				x		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (14x Total course hours)	16	2	32
Hours for off-the-classroom study (Pre-study, practice)	16	1	16

Mid-terms (Including self study)	1	1	1
Quizzes			
Assignments			
Final examination (Including self study)	1	1	1
Total Work Load			50
Total Work Load / 25 (h)			2
ECTS Credit of the Course			2

COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
HISTORY OF TURKISH REVOLUTION II	HTR 302	2	2+0	2	2

Prerequisites	-
---------------	---

Language of Instruction	Turkish 🧭
Course Level	Bachelor's Degree (First Cycle Programmes)
Course Type	Compulsory
Course Coordinator	
Instructors	
Assistants	
Goals	The basic purpose of the programme is to provide the students with a common understanding on the usefulness and the effective methods of studying history, on the importance of revolutionary history of Turkey and on the role of Ataturk,
Content	The fields of the programme are to study the external and internal events in the new state after Laussane Treaty. Moreover following Ataturk's period, it is discussed the Turkish Foreign Policy in the new period which was particularly established after the Second World War.(Turkey's joining to security pacts and the relations with European Union)

Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Expresses Republic of Turkey's position in International arena after Lausanne treaty	5,6,7,9	1,2,3	А
2) Analyzes Social and Political reforms	6,7,9	1,2,3	А
3) Relates Ataturk's Principles and Revolutions	6,7	1,2,3	А
4) Explains Ataturk's Foreign Policy notion	6,9	1,2,3	А
5) Interprets Turkey's position in the 21 st century	6,7,9	1,2,3	А

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Discussion,
Assessment Methods:	A: Exam ,B; Test C: Homework

Week	Topics	Study Materials
1	Lausanne Peace Treaty (compare to treaty of Sevres)	
2	The reforms in political areas (abolition of Sultanate-the establishment of Republic)	
3	The reactions against Political reforms and trial for Multi-Party system	
4	Social and Cultural Reforms	
5	Economic Developments	
6	The developments in Science and Education systems	
7	Midterm Exam	
8	Turkish Foreign Policy in 1939-1945	
9	Economic and Law developments after 1938	
10	The Second World War, Turkish Foreign Policy in the Second World War	
11	The developments after Second World War, the membership for European Union, the relations between Turkey and the United States, National Security	
12	Atatürk's Principles	
13	General Review	
14	General Revision	

RECOMMENDED SOURCES					
Textbook					
Additional Resources	- İmparatorluktan Ulus Devlete Türk İnkılap Tarihi,				
	Öztürk, Cemil (Prof.Dr.) (Editör)				
	Yazarlar : Tülay Alim BARAN (Prof.Dr.),Edip Başer (Dr.),				
	Süleyman Beyoğlu(Prof.Dr.),				
	Handan Diker(Dr.),				
	Vahdettin Engin (Prof.Dr.),				
	Cezmi Eraslan (Prof.Dr.),				
	Arzu M.Erdoğan (Dr.),				
	Cemil Öztürk (Prof.Dr.)				
	- Nutuk				

MATERIAL SHARING			
Documents			
Assignments			
Exams			

ASSESSMENT

IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	1	100
Laboratory		
Assignment		
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50
Total		100

COURSE CATEGORY

Humanities, Communication and Management Skills Courses

COURSE'S CONTRIBUTION TO PROGRAM									
No	Program Learning Outcomes	Contribution							
		1	2	3	4	5			
1	The ability to make computation on the basic topics of mathematics such as limit, derivative, integral, logic, linear algebra and discrete mathematics which provide a basis for the fundamental research fields in mathematics (i.e., analysis, algebra, differential equations and geometry)								
2	Acquiring fundamental knowledge on fundamental research fields in mathematics								
3	Ability form and interpret the relations between research topics in mathematics								
4	Ability to define, formulate and solve mathematical problems								
5	Consciousness of professional ethics and responsibility			х					
6	Ability to communicate actively			x					
7	Ability of self-development in fields of interest				x				
8	Ability to learn, choose and use necessary information technologies								
9	Lifelong education				x				

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities	Quantity	Duration (Hour)	Total Workload (Hour)				
Course Duration (14x Total course hours)	16	2	32				
Hours for off-the-classroom study (Pre-study, practice)	16	1	16				
Mid-terms (Including self study)	1	1	1				

Quizzes			
Assignments			
Final examination (Including self study)	1	1	1
Total Work Load			50
Total Work Load / 25 (h)			2
ECTS Credit of the Course			2