On the Langlands reciprocity and functoriality principles

Kazım İlhan İkeda

Boğaziçi University

Abstract: I shall describe my reflections on the Langlands reciprocity and functoriality principles.

Let K is a number field. The local Langlands group $L_{K_{\nu}}$ of K_{ν} is defined by $L_{K_{\nu}} = WA_{K_{\nu}} = WK_{\nu} \times SL(2, \mathbb{C})$ if $\nu \in \mathbb{h}_{K}$, and by $L_{K_{\nu}} = WK_{\nu}$ if $\nu \in \mathfrak{o}_{K}$, where WK_{ν} denotes the local Weil group of K_{ν} . For each $\nu \in \mathbb{h}_{K}$, fix a Lubin-Tate splitting $\varphi_{K_{\nu}}$. The local non-abelian norm-residue homomorphism

$$\{\bullet, K_{\nu}\}_{\varphi_{\nu}}: \mathbb{Z}\nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})} \xrightarrow{\sim} W_{K_{\nu}}$$

of K_{ν} is defined and studied in the papers by E. Serbest and the author, where $\mathbb{Z}\nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})}$ is a certain topological group constructed using Fontaine-Wintenberger theory of fields of norms. Fix $\underline{\varphi} = \{\varphi_{K_{\nu}}\}_{\nu \in \mathbb{h}_{K}}$ and define the non-commutative topological group $\mathscr{W}\mathscr{A}_{K}^{\underline{\varphi}}$, which depends only on K, by the "restricted free topological product"

$$\mathscr{W}\mathscr{A}_{K}^{\underline{\varphi}}:=\underset{\nu\in \mathbb{h}_{K}}{\ast}'\left({}_{\mathbb{Z}}\nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})}\times \mathrm{SL}(2,\mathbb{C}):{}_{1}\nabla_{K_{\nu}}^{(\varphi_{K_{\nu}})^{\underline{0}}}\times \mathrm{SL}(2,\mathbb{C})\right)\ast W_{\mathbb{R}}^{\ast r_{1}}\ast W_{\mathbb{C}}^{\ast r_{2}}.$$

Here, r_1 and r_2 denote the numbers of real and the pairs of complex conjugate embeddings of the global field K in \mathbb{C} . Note that, $\mathscr{W}\mathscr{A}_K^{\underline{\varphi}^{ab}} = \mathbb{J}_K$. Let L_K denote the hypothetical Langlands group L_K of K. For $\nu \in \mathbb{h}_K \cup \mathfrak{o}_K$, an embedding $e_{\nu} : K^{sep} \hookrightarrow K_{\nu}^{sep}$ determines a continuous homomorphism $e_{\nu}^{\text{Langlands}} : L_{K_{\nu}} \to L_K$ unique up to conjugacy, which in return defines a continuous homomorphism

$$\mathsf{NR}_{K_{\nu}}^{(\varphi_{K_{\nu}})^{\mathrm{Langlands}}}: {}_{\mathbb{Z}}\nabla_{K_{\nu}}^{\varphi_{K_{\nu}}} \times \mathrm{SL}(2,\mathbb{C}) \xrightarrow{\{\bullet,K_{\nu}\}_{\varphi_{K_{\nu}}} \times \mathrm{id}_{\mathrm{SL}(2,\mathbb{C})}} L_{K_{\nu}} \xrightarrow{e_{\nu}^{\mathrm{Langlands}}} L_{K_{\nu}}$$

unique up to conjugacy, for each $\nu \in \mathbb{h}_K$. Fixing one such morphism for each $\nu \in \mathbb{h}_K$, the collection $\{\mathsf{NR}_{K_{\nu}}^{(\varphi_{K_{\nu}})^{\mathsf{Langlands}}}\}_{\nu \in \mathbb{h}_K}$ defines a unique continuous homomorphism

$$\mathsf{NR}_K^{\underline{\varphi}^{\mathtt{Langlands}}}: \mathscr{W}\mathscr{A}_K^{\underline{\varphi}} \to L_K,$$

which is compatible with Arthur's proposed construction of L_K .

Let G be a connected, quasisplit reductive group over K. There is a bijection between the set of "WA-parameters"

$$\phi: \mathcal{W} \mathcal{A}_{K}^{\underline{\varphi}} \to {}^{L}G(\mathbb{C}) = \widehat{G}(\mathbb{C}) \rtimes L_{K}$$

of G over K and the set \mathcal{P}_G whose elements are the collections

$$\{\phi_{\nu}: L_{K_{\nu}} \to {}^{L}G_{\nu}(\mathbb{C})\}_{\nu \in \mathbb{h}_{K} \cup \mathfrak{o}_{K}}$$

consisting of local L-parameters of G_{ν} over K_{ν} for each ν . Note that, assuming the local reciprocity principle for G_{ν} over K_{ν} for all $\nu \in \mathbb{h}_K \cup \mathfrak{o}_K$, the set \mathscr{P}_G is in bijection with the set whose elements are the collections $\{\Pi_{\phi_{\nu}}\}_{\nu \in \mathbb{h}_K \cup \mathfrak{o}_K}$ of local L-packets of G_{ν} over K_{ν} for each ν . As global admissible L-packets of Gover K are the restricted tensor products of local L-packets of G_{ν} over K_{ν} , by Flath's decomposition theorem, we end up having the following theorems

Theorem 1. Let G be a connected quasisplit reductive group over the number field K. Assume that the local Langlands reciprocity principle for G over K holds. Then, there exists a bijection

 $\{WA\text{-parameters of G over }K\} \leftrightarrow \{global \ admissible \ L\text{-packets of G over }K\}$ satisfying the "naturality" properties.

and

Theorem 2. Let G and H be connected quasisplit reductive groups over the number field K. Let

$$\rho: {}^LG \to {}^LH$$

be an L-homomorphism. Assume that the local Langlands reciprocity principle for G over K holds. Then, the L-homomorphism $\rho: {}^LG \to {}^LH$ induces a map (lifting) from the global admissible L-packets of G over K to the global admissible L-packets of H over K satisfying the "naturality" properties.

Date: October 30, 2020; Friday

Time: 13:00

Place: Please contact me for the Google Meet link.